

Quality Assurance in FIWARE
FIWARE team

Future Internet Core Platform

Quality Assurance in FIWARE 1

Table of Contents

1 Introduction ... 2

2 Functional Testing .. 5

2.1 Motivation and approach .. 5

2.2 Methodology .. 5

2.3 Performed tests .. 6

2.4 Summary of obtained results... 13

3 Non-functional (stress) testing .. 15

3.1 Motivation and approach .. 15

3.2 Methodology .. 16

3.3 Performed tests .. 18

3.5 External assessment ... 20

4 Labelling model and application .. 22

4.1 Motivation and approach .. 22

4.2 Labelling model representation ... 25

4.3 Labelling functional aspects ... 26

4.5 Labelling non-functional aspects ... 32

4.5.1. Benchmarking for adjusting the non-functional results ... 38

4.6 Labelling FIWARE GEs ... 39

5 Conclusions .. 41

ANNEX 1: Non-functional (stress) testing report .. 42

A1.1 Non-functional testing reports (for version 5.1)... 42

A1.2 Non-functional testing reports (for version 5.2)... 42

A1.3 Non-functional testing reports (for version 5.3)... 42

ANNEX 2: Functional testing report .. 43

Future Internet Core Platform

Quality Assurance in FIWARE 2

1 Introduction

This document explains all the work done and obtained results in the Quality Assurance task of FIWARE.

The goal of this task has been analyzing and assessing the quality of the most used FIWARE GEs

considering functional and non-functional aspects.

FIWARE is rapidly moving from experimental to production environments in which the platform must

scale in reliable and real workload conditions. This fact implies that all FIWARE GEris must work at an

adequate quality, reliability and at performance level appropriate for these conditions. The reported

task in this deliverable was launched in the framework of the initiative to analyze and assess the level of

quality of each GE, providing diverse kind of reports, labels for GEs and an assessment dashboard.

The quality is evaluated from different points of view:

● Curation of GEs documentation (documentation testing), both inspecting the code and the

accompanying documentation (installation manuals, user guidelines, academy courses and

similar). The goal of this assessment is to support FIWARE users with high-quality support for

installation, configuration and operation of FIWARE technology, thereby improving the FIWARE

user experience in general.

● Verification of the GE specification (functional testing), developing the appropriate test cases to

assess if the GEs implementation corresponds to what is defined in the specification.

● Assessment of performance, stability and scalability of GEs in operational environments, like

under excessive workload (stress testing). Test scenarios are defined and executed such that

limits of a GE under test are identified, and can be compared with reference levels. The goal of

this assessment is to favor the applicability of FIWARE in purely commercial scenarios.

The testing of the documentation and verification has been done for all GE not deprecated in FIWARE

Catalogue (28 in total). Three phases have been required to complete the QA functional test process.

The first phase verifies for each GE the completeness of documentation, the consistency of artefacts and

the soundness of information. The usability of documentation, by example, in case of installation

manual is checked installing step by step the GE. In the second phase specific method calls verified the

single APIs and the response correctness of each GEs. The last phase consisted of functional verifications

based on reference architectures integrating some GEs. As result a live dashboard collects and maintains

the assessment information and GE owners are punctually requested to correct the encountered

deficiencies. At the end of the task, near 95% of the high priority GEs has passed successfully the

documentation and verification tests. The medium and low priority GEs are around 80% of success but

they are working on solving the issues.

Future Internet Core Platform

Quality Assurance in FIWARE 3

Figure 1: Overall functional testing results

On the other hand, the stress testing has been performed only for those GEs most critical in terms of

performance in the overall architecture. An iterative process and operative methodology have been put

in place, obtaining after each iteration, a complete report with the measures obtained after stress test

and analysis of the data. The reports were sent to the GE owners for considering improvements about

performance and stability for next release. Three iterations have been achieved until September this

year: one took place in February testing 9 GEs (Orion, Proton, IoT Broker, IDAS, Kurento, Wilma,

KeyRock, Cepheus, Bosun); the second one in May testing new versions of these GEs; and final one has

tested again a new updated version of some of these GEs (Orion, Proton, Bosun, Wilma, KeyRock) plus

two more identified (AuthZForce and Cygnus) and more frequent combination of GEs

(IDAS+Orion+Cygnus and Wilma+KeyRock+AuthZForce). In summary, 10 GEs and 2 bundles were tested

in stress conditions.

Once the first iteration of stress testing was conducted, a quality assurance expert was consulted for

carrying out an independent assessment of the followed process and executed tests to produce an

assessment of the achieved work. The main conclusions of his assessment were:

 Important performance borders were identified

 Robustness of use within bounds was shown

 Documentation needs to be improved

According to this assessment, FIWARE GEs are fit for being released in a commercial operational

environment with some adjustments. A new external independent assessment has been requested at

the end of the task. The report was not available already at the time of this report.

Future Internet Core Platform

Quality Assurance in FIWARE 4

As part of the overall testing process and based on the obtained results in the three aspects

(documentation, verification and stress) above mentioned, an overall label of quality is granted to each

GE. This global label represents the degree of quality of the GE by adopting the energy labelling system

used by EU for devices. Specific labels for each analyzed category (usability, reliability, efficiency,

scalability, performance and stability) are also granted. Thus, in the Catalogue each GE is labelled with a

global label expanded by clicking of detailed labels map.

Figure 2: Visualization of quality labels in the FIWARE Catalogue

List of online resources those are available:

 Wiki page recording all the tests and results:

http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_QA_Chapter

 Code and guidelines for executing the functional tests:

https://github.com/Fiware/test.Functional

 Code and guidelines for executing the stress tests:

https://github.com/Fiware/test.NonFunctional

 All the reports and other related generated assets at Docman in FIWARE forge under FIWARE

Quality Assurance folder.

 Blog post at FIWARE blog: https://www.fiware.org/2016/09/20/assessing-fiware-ges-quality/

http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_QA_Chapter
https://github.com/Fiware/test.Functional
https://github.com/Fiware/test.NonFunctional
https://www.fiware.org/2016/09/20/assessing-fiware-ges-quality/

Future Internet Core Platform

Quality Assurance in FIWARE 5

2 Functional Testing

The functional test activity verifies the consistency of the documentation and of the software package of

each Generic Enabler and its usability both in standalone mode and combined as integrated platform.

2.1 Motivation and approach

The main motivation to perform the functional test activity is to verify the consistency of GEri's release

and their usability both in standalone mode and combined as integrated platform.

● The first scope is to check the completeness of documentation, specification, implementation

and installation of the GEris.

Figure 3: Artefacts completeness & consistency

● Another scope is to validate the APIs of the most used GE, the same ones already object of the

not-functional test (performance test).

● The last scope is to perform the functional tests on the main functionalities of a bundle of GEs

that identify the reference architecture selected as case study.

2.2 Methodology

Thus, the functional tests are structured into three phases:

1. Documentation Testing

2. APIs Testing

3. Bundle Integration Testing

Future Internet Core Platform

Quality Assurance in FIWARE 6

After these three phases, there is the activity of test and bug management to make sure that each test

activity performed is traced on the FIWARE Backlog and linked to Jira platform as a work-item ticket.

Each bug is reported on the Jira project corresponding to the Technical Chapter/Component under

verification and linked to the work-item (test activity). When the test phase finishes, the work-item is

closed.

The functional test activity includes also the evaluation of the training efficiency of the courses

published and available on the FIWARE Academy (edu.fiware.org).

The training material created and published to the FIWARE Academy was evaluated on the basis of

identified criteria corresponding to specific recommendations to be implemented for granting an

efficient training offering. These recommendations (listed in the FIWARE wiki page “Working with the

FIWARE Academy”) are both formal (minimum set of requirements to make the course comprehensible

to users) and QA (set of requirements to address in order to comply with a good quality). The

verification of formal requirements has been always an on-going activity within the sustainability task, in

charge of the training content development and organization.

Thus, the evaluation activity included two different tasks performed by different teams that cooperated

together and worked in parallel both in the definition of evaluation criteria and in the review phase:

 the evaluation of the QA requirements, resulting in the consequent QA label;

 the verification of formal requirements related to the structure of the course and to its efficient

output.

2.3 Performed tests

Documentation Testing

In the first phase it will be verified for each GEris, the completeness of documentation, the consistency

of artifacts and the soundness of information, based on a specific user profile.

Moreover it will be checked the usability of installation manual by installing step by step the GEri,

performing the sanity check operations and invoking the main APIs.

Here below the summary of the documentation tests results. It can be observed that almost all chapters

are above 90% of completeness and soundness, except the ISND chapter which is below the 40%.

Future Internet Core Platform

Quality Assurance in FIWARE 7

Documentation Testing Validation criteria

The designed tests aim to checks the completeness, consistency, soundness and usability of GEs.

Some checks are subjective because they are based on the evaluator profile. Therefore two evaluation

levels (decision makers and developers) have been identified.

Checking completeness means to verify that each released artefact is complete in all its parts.

The consistency check intends to verify that the release contains all the expected artefacts and that they

are consistent between them.

The soundness’ verification ensures that each artefact has proper contents to its purpose and suitable to

the profile of those who uses them. In fact, the content of a document might be enough to a manager

who must decide whether to adopt a solution based on FIWARE but not enough to the developer that

must implement and vice versa.

Finally, the usability check intends to verify that a document or a package is easily usable, for example,

that an installation manual allows to properly installing a released package.

Some verifications of "Completeness" are made on the web catalogue and they aim to ensure that

information are complete, updated and the linked contents are really accessible. A detailed checklist,

containing all verifications to execute, is linked to these tests. This information is most useful to high-

level user profiles that need an overview to determine if an application is useful to their goals.

Another verification of completeness, useful to both profiles, is to check the Programmer's Guide and

Open Specification in order to verify the Programmer's Guide covers fully the Open Specification.

Regarding Usability:

● for a decision maker it is required:

- all basic information are available and easily attainable

- the catalogue is easily navigable

- training / online courses are available

● for a developer it is required:

- get simple and fast installation methods such as docker, script

- make a step by step GEri installation using the installation manual

Future Internet Core Platform

Quality Assurance in FIWARE 8

- execute the Sanity Check Procedures

- invoke easily the exposed APIs.

APIs Testing

In the second phase, it will be verified all APIs of the GEs, through the specific method call and verifying

the response correctness.

Each Application Programming Interface has been verified as atomic procedure, without combining

business logic. Each procedure has been tested only in the positive case in order to verify the correct

execution of the functionality. The purpose is to verify that the software package actually contains all

the APIs declared in the programmer guides without paying special attention to the negative case or

wrong input of each specific interface.

Here below the summary of APIs tests summary. It can be observed that most of chapters are around

100% of correctness, except the IoT chapter which is between 85-90%, a very good figure as well.

Bundle Integration Testing

The functional bundle integration testing activity performs verifications based on functional scenarios

combining some of the main GE’s interfaces to highlight the interaction among the GEs composing the

bundle. The functional bundle integration tests simulate a real use case.

The proposed functional scenario is a simple Parking management, involving sensors to detect when a

new car enter into the parking, another sensor when a car exits out of the parking and the last sensor to

detect the CO2 level in the parking. The users can manage and verify the parking information according

to specific policy of access control.

The GEs that compose the integrated FIWARE bundle where the functional integration tests are

performed are:

Chapter GE

Security Identity Management - KeyRock

PEP Proxy – Wilma

Authorization PDP – AuthZForce

Future Internet Core Platform

Quality Assurance in FIWARE 9

Internet of Things

Services Enablement

Backend Device Management – IDAS

IoT Agent Ultraligth2.0/HTTP

Data/Context

Management

Publish/Subscribe Context Broker - Orion

Complex Event Processing (CEP) - Proactive Technology Online

(Proton)

Applications/Services

and Data Delivery

Data Visualization - SpagoBI

The functional scenarios use some of the main GE interfaces to highlight the interaction among the GEs

of the platform. The integration tests have been performed using a Client Application in order to

simulate a real application. Here follows the list of the scenarios grouped by functional area contents.

Test Suite ID
TestSuite_TestCase

Test case

Security setup

¡Error! No se
encuentra el origen
de la referencia.

Register User

¡Error! No se
encuentra el origen
de la referencia.

Register Application

¡Error! No se
encuentra el origen
de la referencia.

Register new PEP-PROXY

Access Control ¡Error! No se
encuentra el origen
de la referencia.

Login as Guest

¡Error! No se
encuentra el origen
de la referencia.

Login as Operator

¡Error! No se
encuentra el origen
de la referencia.

Login as Administrator

Entity Management ¡Error! No se
encuentra el origen
de la referencia.

Create Entity Parking

¡Error! No se
encuentra el origen
de la referencia.

Remove Entity Parking

¡Error! No se
encuentra el origen
de la referencia.

Modify Entity Parking - Access Permit

¡Error! No se Modify Entity Parking - Access Denied

Future Internet Core Platform

Quality Assurance in FIWARE 10

encuentra el origen
de la referencia.

¡Error! No se
encuentra el origen
de la referencia.

Get Entity Parking

Service Registration ¡Error! No se
encuentra el origen
de la referencia.

Create service Parking

Device Registration ¡Error! No se
encuentra el origen
de la referencia.

Create device: Sensor sCarEntry

¡Error! No se
encuentra el origen
de la referencia.

Create device: Sensor sCarExit

¡Error! No se
encuentra el origen
de la referencia.

Create device: Sensor sCO2

Observation Measurement ¡Error! No se
encuentra el origen
de la referencia.

Sensor sCarEntry detects a car entry (parking not
full)

¡Error! No se
encuentra el origen
de la referencia.

Sensor sCarEntry detects a car entry (parking full)

¡Error! No se
encuentra el origen
de la referencia.

Sensor sCarExit detects a car exit

¡Error! No se
encuentra el origen
de la referencia.

Sensor sCO2 measures the CO2 level

Data visualization ¡Error! No se
encuentra el origen
de la referencia.

Dynamic Report - Parking data

¡Error! No se
encuentra el origen
de la referencia.

Static Report – Parking data

¡Error! No se
encuentra el origen
de la referencia.

Static Report – Parking Statistics

Table 1: Functional scenarios of integration tests

The integration tests have been performed imagining to simulate a real application with a simple

business logic. The test suite is a group of test cases or scenarios related to the same functional content.

Each Integration Test Scenario is a test case containing a list of steps explaining the flow of the

communication through the GEs and for each test case is reported the log of the main process steps.

The detailed results are reported in the ANNEX 2 of the current document

Future Internet Core Platform

Quality Assurance in FIWARE 11

The attached image describes spreadsheets collecting the designed test suite.

Figure 4: Spreadsheets collection with functional tests results

It has a summary sheet that reports the global overview on activity progress and detailed sheets for

each GE.

These sheets show all planned tests, permit to trace the execution information and the Jira reference in

case of failed result.

Each sheet also reports the general information (owner, version, etc.) about GE or Platform to test and

the global pre-requirements in order to perform the tests.

For some tests, in addition to the execution procedure and the validation criteria, a “child” sheet that

represents a checklist is linked.

Future Internet Core Platform

Quality Assurance in FIWARE 12

It reports, based on the test scenario, the items list to verify, the steps to execute or the APIs to invoke.

Academy courses testing

The testing activity of the FIWARE Academy courses is the task performed to evaluate the efficiency of

training.

The courses are publicly available at edu.fiware.org, and any user interested in using FIWARE can easily

understand whether a given course does fit the user's need or not.

The training material created and published to the FIWARE Academy was evaluated on the basis of the

criteria listed in the guidelines to be followed by the editor of the course for granting an efficient

training offering. The guidelines are publicly available in the FIWARE wiki page “working with the

FIWARE Academy# Course Evaluation for Efficient Training”1 , and the GE Owners are asked to follow

those guidelines, reported below.

The following table shows the list of the academy courses evaluated and the relative results.

Chapter Course ID Status Score

Security

Identity Management 79 Completed Good

PEP Proxy 131 Completed Good

Authorization PDP 144 Completed To Improve

Access Control (OAUTH-API-AZ) 57 Completed To Improve

Applications/Services

Apps and Services Overview 52 Completed Sufficient

DataVisualization 141 Completed Sufficient

Application Mashup 53 Completed Good

Marketplace 21 Completed Sufficient

Repository 127 Completed Sufficient

Revenue Settlement and Sharing System 117 Completed To Improve

1
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Working_with_the_FIWARE_Academy#Course_
Evaluation_for_Efficient_Training

https://edu.fiware.org/course/view.php?id=79
https://edu.fiware.org/course/view.php?id=131
https://edu.fiware.org/course/view.php?id=144
https://edu.fiware.org/course/view.php?id=57
https://edu.fiware.org/course/view.php?id=52
https://edu.fiware.org/course/view.php?id=141
https://edu.fiware.org/course/view.php?id=53
https://edu.fiware.org/course/view.php?id=21
https://edu.fiware.org/course/view.php?id=127
https://edu.fiware.org/course/view.php?id=117

Future Internet Core Platform

Quality Assurance in FIWARE 13

Store 104 Completed Sufficient

Data/Context Management

Context Broker 132 Completed Good

Context Broker (2) 44 Completed Sufficient

Context Broker (5) 149 Completed Sufficient

Big Data 69 Completed Sufficient

Complex Event Processing 58 Completed Good

Stream Oriented 62 Completed Good

Short Term Historic Open Data Repository

(CKAN)

145 Completed
To Improve

Interface to Networks and Devices (I2ND)

Network Information And Control (OFNIC) 72 Completed To Improve

Advanced Middleware (Kiara) 140 Completed To Improve

Internet of Things (IoT) Services Enablement

Backend Device Management (IDAS) 128 Completed Sufficient

IoT Broker 33 Completed Sufficient

IoT Data Edge Consolidation 36 Completed Sufficient

IoT Discovery 40 Completed Sufficient

Advanced WebUI

3D-UI-XML3D 97 Completed To Improve

Cloud Rendering 92 Completed Sufficient

GIS Data Provider 88 Completed To Improve

Interface Designer 91 Completed Sufficient

POI Data Provider 96 Completed Sufficient

Synchronization 111 Completed Sufficient

https://edu.fiware.org/course/view.php?id=104
https://edu.fiware.org/course/view.php?id=132
https://edu.fiware.org/course/view.php?id=44
https://edu.fiware.org/course/view.php?id=69
https://edu.fiware.org/course/view.php?id=69
https://edu.fiware.org/course/view.php?id=58
https://edu.fiware.org/course/view.php?id=62
https://edu.fiware.org/course/view.php?id=145
https://edu.fiware.org/course/view.php?id=72
https://edu.fiware.org/course/view.php?id=140
https://edu.fiware.org/course/view.php?id=128
https://edu.fiware.org/course/view.php?id=33
https://edu.fiware.org/course/view.php?id=36
https://edu.fiware.org/course/view.php?id=40
https://edu.fiware.org/course/view.php?id=97
https://edu.fiware.org/course/view.php?id=92
https://edu.fiware.org/course/view.php?id=88
https://edu.fiware.org/course/view.php?id=91
https://edu.fiware.org/course/view.php?id=96
https://edu.fiware.org/course/view.php?id=111

Future Internet Core Platform

Quality Assurance in FIWARE 14

Virtual Characters 112 Completed Sufficient

Cloud Hosting

Policy Manager 119 Completed Sufficient

Table 2: Results of academy courses testing

2.4 Summary of obtained results

The quality assurance functional testing activities have been performed by a team with

technical competences corresponding to the target teams who will use the FIWARE platform.

Also the human factor is an important value in the propagation of innovative platforms even if

not perfect and experimentally because they are easily accepted, fitted and implemented by

open mind teams.

The activities have achieved positive results and in case of insufficiencies, using the Jira tool,

bugs have been reported to the owners of the generic enables to improve their products. The

Jira tool has been very useful to track the problems and also to require information, in most

cases a successful cooperation has been reached between the QA team and the owner of the

GEs.

Few simple comments to summarize the functional test activities:

● Documentation testing

The GE manual allows installing the components but the documentation is not always clear,

readily available from the many links.

● APIs testing

The installed software package implements the API declared into Open Specification.

The main failures concern the missing information on documentation.

● Bundle Integration tests

This activity is the most interesting, because it combines more generic enablers going to

compose a platform. They are test on how they work together by simulating functional

scenarios.

● Academy courses testing

The training is efficient if it fits the user's need and grants to acquire a quick understanding

of the product. Overall the academy courses are sufficient; also in this case many tips have

been reported on Jira tool to help the owner of the GEs to improve the training.

https://edu.fiware.org/course/view.php?id=112
https://edu.fiware.org/course/view.php?id=119

Future Internet Core Platform

Quality Assurance in FIWARE 15

3 Non-functional (stress) testing

The non-functional test activity assesses the behavior of each GE in limit conditions of loading and

stress.

3.1 Motivation and approach

FIWARE is approaching real life and production environments in which the platform must behave in

reliable and real workload conditions. This fact implies that all FIWARE GEs must work at an adequate

quality, reliability and performance level for these conditions. In previous platform stages, testing at

component level has been performed by GE owners, but now, both functional and stress testing need to

be put in place, helping GE owners to improve the quality of their GEs. The present section states why

stress (or non-functional) testing is convenient at this stage, under which assumptions this kind of

testing are conducted and who are involved in such task.

Main motivation for having a task like this in the project is to evaluate the performance and stability of

FIWARE GEs in similar conditions to a production and real environment by stressing the GEs up to their

maximum capacity and reaching load peaks. Time responses, usage of memory, response error rate

among other parameters are measured by professional testing units of FIWARE partners (Atos and ENG)

who are performing the evaluation.

In order to be practical and operative, a light and practical method commonly agreed by involved

partners has been followed (see Section 3.2). The section 3.3 shows all the performed stress tests and

the results obtained. The tests have been reported homogeneously following a common template (as it

is included as annexes of this document).

Finally, an external third party has elaborated an assessment of the testing process and obtained results

to verify that tests are being done properly under standard method. The assessment has been

conducted twice, one at the end of first wave of tests; and a second one at the end of all tests. The

recommendations provided by the first assessment were taken into consideration for the further

iterations of tests. The two reports are annexed to this deliverable.

Due to the objective itself of the task, it was planned very operative and driven by prone results. This

fact implied to establish a set of principles that allowed us to perform the task in optimal conditions

adapted to these external factors. Thus, following principles can be enumerated:

 The non-functional testing will first focused on performance and stability, extended to scalability

when possible. Orion GE has been the most deeply tested about scalability (horizontal and

vertical).

 The approach will be very practical, but some method is need to be followed defining how to

test and how to produce the results, as describe in section 3.2.

Future Internet Core Platform

Quality Assurance in FIWARE 16

 The method will be non intrusive with GE owners’ testing assurance procedures, but providing

them recommendations about their GE’s behavior to improve in future GE versions

 When possible, the task will re-use some existing infrastructure for performing the tests;

otherwise ad-hoc environment might be created

 The testing execution and results are updated with every release of GEs, to keep constant the

performance level of GEs or even improve it ideally. In the future, the tests will be automated

when possible to be launched for each new release.

 Automation is a nice to have but not a must, since it is not trivial due to the diverse nature and

typology of the GEs. Each GE requires a completely different infrastructure and method of

testing.

 All the tests scripts and methods are published to allow anyone to replicate the test when

wished. A dedicated project in FIWARE GitHub is available for such purpose (named as

test.nonfunctional).

3.2 Methodology

As already mentioned, a light and practical method was chosen for carrying out the stress testing. Each

Generic Enabler (GE) was tested by following, as much as possible, a “black box” approach, namely

soliciting its APIs and examining some non-functional parameters such as, for example, stability and

performance, without any knowledge of the internal implementation.

The purpose of this process was in fact to determine the point at which extremes of scalability or

performance lead to unstable execution thus assessing the limits/breakpoints of each GE

implementation.

In the following chart is represented the flow adopted in order to test each Generic Enabler reference

implementation (GEri).

Future Internet Core Platform

Quality Assurance in FIWARE 17

This flow was realized with the execution of ten steps, which are listed as following and then briefly

described:

1. Select the GE implementation to be tested

2. Check requirements

3. Prepare the Test report doc from the template

4. Select which classes of metrics to adopt

5. Define the Test cases

6. Develop Test scripts

7. Run Tests

8. Collect results

9. Analyze results

10. Assign quality labels (shared with Functional testing)

Future Internet Core Platform

Quality Assurance in FIWARE 18

3.3 Performed tests

Three waves of tests were done along the task. The first one was executed by beginning of 2016

considering the release 5.1 of the nine selected GEs (Orion, Wilma, KeyRock, Cepheus, Bosun, Proton,

IDAS, Kurento, IoT Broker). The results were provided to the GEs who were able to consider them in

some cases for the next release, 5.2, which was tested by May 2016. In this occasion, only six GEs out of

the initially ten selected were tested (Orion, KeyRock, Wilma, Kurento, Cepheus and Bosun). The others

did not produce significant changes in their versions to consider a new relevant testing. Once again the

results were sent to the GE owners for improving next version. And finally, version 5.3 of all the GEs (the

ten in total) was tested during this summer. All the reports corresponding to each wave of tests can be

found in the annexes of this document. This section is summarizing the performed tests to each GE and

the obtained results in the last wave of tests, that is, for version 5.3 in most of the cases.

The summary of the three waves of testing can be seen at a glance in following tables:

GE name Reliability

(errors rate)

Performance in stress condition (num

requests, response time)

Stability (crashes)

Orion Very good Good (4000 subscriptions/sec) Good

Proton Very good Very good (500 requests/sec; more tan 900

creating definitions/sec)

Average (no closing

threads)

Future Internet Core Platform

Quality Assurance in FIWARE 19

IDAS Very good Very good (200 simultaneous threads, 120

devices/sec)

Average (no

releasing memory)

KeyRock Very good Good (300 concurrent threads) Very good

Wilma Very good Good (30.000 authentications in 6 min) Very good

Kurento Good Good (but only for less than 50 simultaneuos

users and low quality video)

Good

IoT

Broker

Average Not really good (more than 1 sec/request) Good

Cepheus Very good Good (100 requests/sec, but not stable) Average (no

releasing memory)

Bosun Good Average (150 simultaneous threads max, 5

HTTP responses/sec)

Good

Table 3: Results of release 5.1 stress tests

GE name Reliability

(errors rate)

Performance in stress condition (num

requests, response time)

Stability (crashes)

Orion Very good Very Good (2000 attributes updated/sec) Good

KeyRock Very good No good (300 concurrent threads) Very good

Wilma Very good Good (30.000 authentications in 6 min) Very good

Kurento Good Average (for less than 50 simultaneuos users

and low quality video)

Good

Cepheus Very good Good (100 requests/sec, but not stable) Average (no

releasing memory)

Bosun Good Good (185 simultaneous threads max, 26 HTTP

responses/sec)

Good

Table 4: Results of release 5.2 stress tests

GE name Reliability

(errors rate)

Performance in stress condition (num

requests, response time)

Stability (crashes)

IDAS Very Good Very Good (140 updates /second, 200 threads) Very Good

Future Internet Core Platform

Quality Assurance in FIWARE 20

IoT Broker Good for two

out of three

APIs tested

(0% for

UpdateContex

t and

QueryContext;

44%

forSubscribeC

ontext

NOT GOOD: With 16 concurrent users (threads)

which sent 3.241 requests in 2’ with AV RT < 0,5

s. Above that threshold, AV RT is around 4 s.

Results on the average are not yet satisfactory,

even after excluding, where viable, the

bottleneck represented by IoTDiscovery

implementation (NEConfman).

No crash (but many

exceptions found in

the

SubscirbeContext

test log file)

AuthZForce VERY GOOD

0%

VERY GOOD: AV RT around 11 ms; load average

value around 4376 requests per second

No crash

KeyRock

Very Good (0 %

Error)

AVERAGE

authorisation RT registered a much better

average value (164 ms and 211 ms) than

authentication RT which could register values <1 s

only with a number of threads lower than 20; in

fact over this threshold, response times increased

significantly up to almost 4 s.

Authorisation max load with AV RT<1s= 232

requests/s

Authentication max load with AV RT<1s=23,30

requests/s No crash

Very Good (0 % Error)

Wilma

Very Good (0 %

Error)

VERY GOOD: a low average response time (219

ms in the first test and 83 ms in the second one)

allowed the GEri to guarantee, on average, up to

839 requests/s.)

No crash

Table 5: Results of release 5.3 stress tests

3.5 External assessment

In order to ensure the quality itself of the carried out methods and tests in non-functional testing to

assess the GEs quality, an external expert was in charge of assessing them to state the validity of the

performed work.

The main statement of the first report was “In general, the process for non-functional testing is

adequate and the preliminary results obtained by the non-functional tests are satisfactory”. However,

some recommendations were provided to be considered:

 The baseline (minimal expected load) and targets (maximal load reasonably to be expected) for

the non-functional testing should be defined and justified before the actual testing takes place.

Future Internet Core Platform

Quality Assurance in FIWARE 21

These values were requested to GE owners and most of them claimed that they were not aware

of such values. In those cases where the GE owner provided the reference values, they were

used for establishing the limit of the GE. When values were not available, reference values were

obtained from the accelerators usage of GEs.

 Potential bottlenecks which could occur in the application of (combinations of) GEris should be

better analysed.

Initially the task wanted to isolate the GEs in order to know the properties and values of each

GE, but combination of GEs has been considered and two bundles have been tested: the one

formed by Orion, IDAS and Cygnus; and the one composed of Wilma, KeyRock and AuthZForce.

 Testing results should be better interpreted, and alternative routes and variants which may occur

as a result of non-functional testing should be explicated.

An effort to homogenise the tests results has been done. The two partners involved in the task

have worked on common templates for reports and agreed on common criteria and measures

to align the testing process across all GEs. It has been also making an effort in explaining the

rationale behind the obtained results, especially to allow GE owners to understand the reason of

got values and how they could improve them.

 In mid-term, non-functional testing should be linked to other software-development activities.

This is a nice to have feature that in the context of present project has been started although

not completed. It is planned to enhance and fulfil this objective in near future. Anyway, it is not

clear how much automation and integration of stress testing with software development

process will be able to be reached. The main concern is the variety of testing scenarios and

environments are required for each GE, as they are from diverse type of application and way of

usage.

Full report can be consulted at Non-Functional Assessment Report.

https://forge.fiware.org/docman/view.php/7/5516/20160224_Fraunhofer_FIWARE-Testing-Assessment_v2.pdf

Future Internet Core Platform

Quality Assurance in FIWARE 22

4 Labelling model and application

Once the GEs are tested, a way to make evident the result of the test was thought as needed. A model

of labels to state the quality of each GE by using a graphical visualization was decided. This section

explains the selected approach, the method used for calculating the labels and the application of the

model to ten selected GEs.

4.1 Motivation and approach

You cannot control what you cannot measure” is a well-known old motto by Tom Demarco [3]. But you

cannot measure what you are not able to properly define and you cannot define what you do not

properly know. Thus, the first step is properly to know and define the entities of interests (EoI) for our

analysis. Second, measure and establish a measurement protocol for reducing and minimizing the

probability of a bad measurement. Third, to store historical data for

determining trends, useful to refine forecasts and estimations and, in our

case, better determine the effort needed to use the ‘building blocks’ (GE –

Generic Enablers) from this project. Each GE needs to have a ‘value rating’

expressing its goodness, hybridizing quantitative (measurement) and

qualitative (evaluation) viewpoints into a unique, consolidated view: this

involves also non-technical stakeholders by proper (visual) communication

mechanisms, possibly with analogies from the common daily life: the simpler,

the better. An example is therefore to use the ‘labeling’ concept, as well as

done for the consumption of energy. A rating is not a measurement, but the

result of an evaluation. In this case better to use an even scale in order to

avoid choosing the central value in such distribution. ‘Adopt and adapting’

such concept can reduce in the target users their possible psychological

resistance to change and easily being accepted and understood. That’s why it

has been set up the seven (7) values (from A+++ to D), as well as in the energy

ratings for home appliances also for rating GE’s.

Such label will express the ‘value’ of such component,

where such term – as well as in the Service Management

domain (e.g. in ITIL, ISO 20000, etc.) – means the logical

summation of ‘utility’ (what a ‘service’ should do,

according to the customer viewpoint) and ‘warranty’ (how

and how much a ‘service’ should operate, according to the

users’ viewpoint). Only putting together at least such two

views, a provider can bring back a ‘quality’

product/service. In the system/software engineering

domain, ‘utility’ matches with FURs (Functional User

Requirements) and ‘warranty’ with NFRs (Non-Functional

Figure 5: EU labelling
system

Figure 6: A (service) value representation

Future Internet Core Platform

Quality Assurance in FIWARE 23

Requirements). Referring to the standard ISO glossary2, a product is the ‘component’ for delivering a

service and – from a provider perspective, as the FIWARE consortium is – the product ‘is’ the ‘service’

for the European Commission. Here a visual example of such complementarity between the two

aspects:

A well-known and logical best practice is to ‘adopt and adapt’ a well-known concept from other

(physical) domains and (personal) experiences reducing the possible resistance to change and be easily

accept by the target users. Thus, looking to the FIWARE GE Catalogue

(http://catalogue.fiware.org/enablers), here it follows a preview about how it shall appear.

.
Figure 7: A preview of GE quality labelling in FIWARE Catalogue

Thus, the hybrid measurement (‘labeling’) for GEs matching functional and non-functional attributes will

follow the consolidated assessment criteria in process management in Maturity & Capability Models

(MCM), that’s an ordinal 4-scale rating (N/P/L/F; Not/Partially/Largely/Fully achieved). You cannot

achieve the next level if the previous level is not (at least) a L/F evaluation [3]. Using a grid-like approach

and a set of criteria for determining the overall quality of a GE, considering both functionalities (utility)

and non-functionalities (warranty), we can determine a three-dimensional ‘(GE) labeling cube’, where

each GE shall be described by a set of attributes (as described in the following sections). The criteria for

evaluating a product shall arise from the ISO/IEC 25010:2011 quality model applicable both to products

and services and for each criteria (attribute) one or more measures shall be applied, obtaining a

hierarchy with three levels.

2 www.computer.org/sevocab

http://catalogue.fiware.org/enablers
http://www.computer.org/sevocab

Future Internet Core Platform

Quality Assurance in FIWARE 24

Figure 8: The GE labelling cube

In this way each GE shall have few possible product attributes describing it, using a 7-point ordinal scale

as the final rating (labeling), from ‘A+++’ to ‘D’. ‘Adopting and adapting’ such approach to rate process

(aggregating NPLF values for determining Capability Levels) to GE’s (products), each defined measure

(described in the next sections) will establish thresholds for determining the quality levels and the final

overall GE value for determining its label will be average level achieved by ALL the evaluation criteria

adopted, as in the following figure.

Figure 9: An example of rating (detailed) results

Future Internet Core Platform

Quality Assurance in FIWARE 25

The overall rating for such GE would be a Level ‘A++’; (2) the detailed result from the GE Labeling cube

will be visualized clicking on the label value from the FIWARE GE catalogue, allowing interested

stakeholders to that specific GE to properly understand where such component could be reworked

and/or eventually improved first. That’s what it is needed to provide them.

See Section 4.6 for the results obtained for the set of GE's.

4.2 Labelling model representation

Once established the labels (detailed and overall) for all GEs, the model must be represented and

visualized somehow the obtained results can be shown to the GE’s users in the Catalogue and

automatically updated as soon as new measurements are taking place.

By proposed design, labels should not be static images, but an output of a labeling service. In the

backend, measurement data as described in following sections is aggregated and by applying a set of

business rules the service returns a label bound to an Enabler. This service can be contextually called

from the Catalogue. While the automation of labels visualization is completed, a static visualization of

the obtained labels so far is shown in the Catalogue. A set of icons have been generated for representing

each of labels value:

Figure 10: Labels icons

Then, the corresponding overall label has been embedded into corresponding GE box in the Catalogue,

as for example can be seen below for Orion. By clicking on the label icon, a pop up window shows the

detailed labels along the obtained values and meaning of each evaluated criteria.

Future Internet Core Platform

Quality Assurance in FIWARE 26

Figure 11: Visualization of Orion labels in FIWARE Catalogue

4.3 Labelling functional aspects

In order to label GEs according to functional attributes, a table as the following one was filled, with an

evaluation of three main product attributes: Usability, Reliability and Efficiency. Each one will be split in

a set of related measures and the average of them would be considered.

The proposed measures were introduced in the following table and later discussed in detail:

Prod. Attribute Derived Measure Base Measures Formula

Usability Completeness Nominal value based on document

verification

Soundness Nominal value based on document

verification

Reliability Failure Rate Total number of Test failed (TF)

Total number of Test cases executed

TF/TE

Future Internet Core Platform

Quality Assurance in FIWARE 27

(TE)

Defects by Priority Total number of Blocking/Critical level

Defects (DB)

Total number of Major level Defects

(DM)

Total number of Minor/Trivial level

Defects (DT)

Total number of Defects (D)

(DB*w1+DM*w2+

DT*w3)/D

Note: Defect

Blocking/Critical

weight (w1=3)
Defect Major weight

(w2=2)
Defect Minor/Trivial

weight (w3=1)

Efficiency Time to Taking charge Date of taking charge of each defect

(TD)

Date open for each defect (OD)

Total number of Closed defects (D)

∑(TD-OD)/D

Time to Fix Date of fix for each defect (FD)

Date of taking charge of each defect

(TD)

Total number of Closed defects (D)

∑(FD-TD)/D

Table 6: Calculation criteria for functional labels

1. Usability measures

This set of measures evaluates the ease of use of documentation, therefore the ability to find “the right

information at the right time”, verifying that a document is complete, findable and consistent.

1.1. Completeness measure

This is a nominal measure based on the documentation availability and its completeness to ensure the

document usability.

The analyzed items, sorted by relevance, are:

· Open Specification

· Installation guide

· Docker for installation

· Course or Tutorial in Academy site

Completeness

Label Value Base Measures Formula

A+++ Excellent Nominal value based on

document verification

Each expected document is available. The

information are exhaustive, easily accessible

and easy to use. There are examples,

comments or other utilities that improve the

reading/comprehension.

Future Internet Core Platform

Quality Assurance in FIWARE 28

A++ Very good Each expected document is available. The

information are exhaustive, easily accessible

and easy to use.

A+ Good Each expected document is available. The

information are fully exhaustive.

A Fair Each expected document is available and

enough exhaustive

B Poor Each expected document is available but the

information are not always exhaustive, easily

accessible and easy to use.

C Very poor Some documents are missing. Those available

are not always exhaustive, easily accessible and

easy to use.

D Bad All or many documents are missing

Table 7: Measurement criteria for Completeness evaluation

1.2. Soundness measure

This is a nominal measure based on the documentation soundness to ensure the correctness of APIs

usability.

The analyzed items (sorted by relevance) are:

· Programmer’s Guide

· Software Package

· APIs Specification

Soundness

Label Value Base Measures Formula

A+++ Excellent Nominal value based on

document verification

The information is exhaustive, easily accessible

and easy to use. There are examples,

comments or other utilities that improve the

reading/comprehension.

A++ Very good The information are exhaustive, easily

accessible and easy to use.

A+ Good The information are fully exhaustive.

A Fair The information is enough exhaustive

B Poor The information are not always exhaustive,

easily accessible and easy to use.

Future Internet Core Platform

Quality Assurance in FIWARE 29

C Very poor Some information are missing. Those available

are not always exhaustive, easily accessible and

easy to use.

D Bad Core information are missing

 Table 8: Measurement criteria for Soundness evaluation

2. Reliability measures

This second set of measures is about the capability of a GE to be reliable as much as possible in order to

maximize its MTBF (Mean Time Between Failures). Even if this would be a product attributes in ISO/IEC

25010:2011, (thus as a non-functional attributes), here it should be seen as a set of attributes (and

related measures) for showing how much it should be fixed for obtaining a proper ‘uptime’ for the

observed GE.

2.1. Failure Rate measure

It determines the % of Failures in the executed test cases.

This measure is calculated from data gathered by Functional Test Reports.

Failure Rate

Label Value Base Measures Formula

A+++ < 0,05 Total number of Test failed (TF)

Total number of Test cases

executed (TE)

TF/TE

A++ 0,05 - 0,16

A+ 0,17 - 0,27

A 0,28 - 0,38

B 0,39 - 0,49

C 0,50 - 0,6

D > 0,6

 Table 9: Measurement criteria for Failure Rate evaluation

2.2. Defects by Priority metric

It determines the number of defects based on “Blocking/Critical” - “Major” – “Minor/Trivial” Priority

(Service Desk’s viewpoint)

This measure is calculated from data gathered by a Jira installation

(https://www.atlassian.com/software/jira)

Priority Description

https://www.atlassian.com/software/jira

Future Internet Core Platform

Quality Assurance in FIWARE 30

Blocking/Critical This has to be fixed immediately. This generally occurs in cases when an entire functionality is

blocked and no testing can proceed as a result of this or, in certain other cases, if there are

significant memory leaks

Major Normally when a feature is not usable as it’s supposed to be, due to a program defect, or that

a new code has to be written or sometimes even because some environmental problem has to

be handled through the code

Minor/Trivial A defect with low priority indicates that there is definitely an issue, but it doesn’t have to be

fixed to match the “exit” criteria. However this must be fixed before the delivery. Sometimes it

could be even a cosmetic error.

Defects by Priority

Label Value Base Measures Formula

A+++ < 1,5 Total number of Blocking/Critical

level Defects (DB)

Total number of Major level

Defects (DM)

Total number of Minor/Trivial

level Defects (DT)

Total number of Defects (D)

(DB*w1+DM*w2+DT*w3)/D

Note: Defect Blocking/Critical weight

(w1=3)

Defect Major weight (w2=2)

Defect Minor/Trivial weight (w3=1)

A++ 1,5 - 1,7

A+ 1,71 - 1,9

A 1,91 - 2,1

B 2,11 - 2,3

C 2,31 - 2,5

D > 2,5

 Table 10: Measurement criteria for Defects by Priority evaluation

3. Efficiency Metrics

This third set of measures is about the capability of a Service Desk (SD) to solve incidents related to GEs

and manage them for maximizing the customer/user satisfaction.

3.1. Time to Taking charge measure

It determines the number of average working days valuated from the opening date to the taking charge

date of the defect.

This measure is calculated from data gathered by a Jira installation

(https://www.atlassian.com/software/jira)

Time to Taking charge

Label Value Base Measures Formula

A+++ < 1 Date of taking charge of each ∑(TD-OD)/D

https://www.atlassian.com/software/jira

Future Internet Core Platform

Quality Assurance in FIWARE 31

A++ 1 - 3,7 defect (TD)

Date open for each defect (OD)

Total number of Closed defects

(D)

A+ 3,8 - 6,5

A 6,6 - 9,3

B 9,4 - 12,1

C 12,2 - 15

D > 15

 Table 11: Measurement criteria for Time to Taking evaluation

3.2. Time to Fix measure

It determines the number of average working days valuated from the taking charge date to the fix date

of the defect.

This measure is calculated from data gathered by a Jira installation

(https://www.atlassian.com/software/jira)

Time to Fix

Label Value Base Measures Formula

A+++ < 1 Date of fix for each defect (FD)

Date of taking charge of each

defect (TD)

Total number of Closed defects

(D)

∑(FD-TD)/D

A++ 1 - 4,7

A+ 4,8 - 8,5

A 8,6 - 12,3

B 12,4 - 16,1

C 16,2 - 20

D > 20

 Table 12: Measurement criteria for Time to Fix evaluation

The GEs have been labelled according to the functional measures and for each one are reported the

measures. The GEs labelled are the same labelled for the non-functional aspects. See section 4.6 for

details.

https://www.atlassian.com/software/jira

Future Internet Core Platform

Quality Assurance in FIWARE 32

4.5 Labelling non-functional aspects

In order to label GEs according to non-functional attributes, a table as below was filled, with an

evaluation of three measures: Scalability, Stability and Performance. In the next pages, the way to fill

these categories is explained.

1. Scalability measure

In this section, the behavior of the GEri when the load increased was studied.

In order to assess the Stability, we have to choose a fixed interval where the system has already reached

the maximum requests per second data, and the system is not failing yet. For that fixed time interval, we

calculate the ratio between final/starting response time and the ratio between final/starting thread

number. Then, we calculate growing response time ratio / growing thread number ratio and check the

result in the next table:

Growing Response Time ratio/ Growing thread number ratio

Label Value

A+++ < 1.05

A++ 1.22 - 1.05

A+ 1.42 - 1.21

B 1.74 - 1.43

C 2.15 - 1.75

D 2.6 - 2.16

E > 2.6

Table 13: Value ranges for scalability evaluation

2. Stability measure

This is the evolution of the system along the time. To label the stability, the results in a stability scenario

have to be checked. Then, it would be labeled depending on the existence of leaks:

Stability[rz3] [CLH4]

Label Value

A+++

Nor CPU nor memory increases in the whole test (when the load is

stable)

A++

Memory usage is a little higher at the end of the test than at the

beginning (probably due to data generated).

Future Internet Core Platform

Quality Assurance in FIWARE 33

A+ Memory and CPU usages are a little higher at the end of the test

A

Memory and/or CPU are significantly higher at the end of the test, but

doesn’t seem to exist a leak

B Memory leak avoidable with configuration or load limitation

C Memory leak not avoidable. The system crashes after a few hours.

D High leak. System crashes before half an hour

 Table 14: Value ranges for stability evaluation

3. Performance measure

To evaluate performance, the maximum request handling per second would be considered. Because the

requests of different GE’s can have different complexity, a study of the functionality must be done

before. The most common functionalities would be considered in the next points.

3.1 GEs with NGSI attribute updates

These are the GEs which are capable of create/update NGSI entities and attributes. In this category is

included, for example, the Context Broker GE.

 Update attribute measuring

For this measure, is needed to find the most production point at first (the first point where the

maximum responses per second rate is reached) for request that updates attributes. Then, at this point,

response times and responses per second have to be measured.

 Updated attributes per second

In order to do an equitable comparison, it has to be considered the number of the attributes which are

updated in each request. The reason is that the processing effort is higher if is needed to do more

update transactions in database, and some other operations. If this is a random number (for example,

each request updates a random number of attributes, between 1 and 3), then the average number can

be used (in this example, two attribute updates would be considered). When that number is found, it

has to get the number of attribute updates per second. For example, if in the maximum production

number, the responses per second rate is 200, and (as seen before), the average attributes updates per

requests is 2, then the number of attribute updates per request is 400. In our example, it would be

labelled with a ‘B’ according to the table below.

Updated attributes/second

Label Value

A+++ > 591

A++ 541 – 590

Future Internet Core Platform

Quality Assurance in FIWARE 34

A+ 481 – 540

A 391 – 480

B 271 – 390

C 141 – 270

D <140

 Table 15: Value ranges for performance (updated att/sec) evaluation

3.2 GEs with event receiving

These are the GEs which are capable to handle events, for example, the Proton GE. For evaluating them,

it is consider their performance in responding to HTTP requests containing events.

 Event receiving measuring

As before, it is needed to find the most production point at first (the first point where the maximum

responses per second rate is reached) for requests that update attributes. Then, at this point, response

times and responses per second have to be measured.

 Events per second

Despite the updated attributes case, usually only an event for each HTTP request is sent. The next table

shows how to label the event processing.

Events/second

Label Value

A+++ > 492

A++ 451 – 492

A+ 401 – 491

A 313 – 400

B 195 – 312

C 94 – 192

D < 94

Table 16: Value ranges for performance (events/sec) evaluation

Again using our previous example, it would be labelled with a ‘B’ according to the table.

3.3. WebRTC based GEs

Future Internet Core Platform

Quality Assurance in FIWARE 35

GEs based on WebRTC protocol fits into this category. For these GEs, standard metrics for HTTP protocol

based GEs cannot be used. Instead of that, following metrics are needed.

 Bit Rate metric

In this case, the most meaning value in order to assess the performance is the Total Bit Rate that the

system can serve. For that, it is needed to multiply the Bit Rate by the number of users.

 Bit rate and users number

The next table shows how to label in function of the Bit Rate and users number.

(Bit Rate * users number) ratio

Label Value

A+++ > 4'5 Mbps

A++ 2'01 - 4'5 Mbps

A+ 1'01 - 2 Mbps

A 0'501 Mbps - 1 Mbps

B 251 Kbps - 500 Kbps

C 100 Kbps - 250 Kbps

D < 100 Kbps

Table 17: Value ranges for performance (bit rate/user) evaluation

In our example, it would be labelled with an ‘A++’ according to the table.

3.4. GEs handling authentication/authorisation request

Some GEs provide the most used features handling HTTP requests that imply operations such as the user

authentication and/or authorisation. These operations can be directly invoked by a hypothetical IdM GE

as well as indirectly by another GE that strictly depends on the first one. In order to evaluate both

operations, their performances in response to HTTP requests have to be taken separately and then

merged in a unique value through the process described below.

 Completed request measuring

Firstly, starting from the output of the non-functional tests, the already measured response times and

the number of responses per second have to be taken into account in order to find the most production

point (the first point where the maximum responses per second rate is reached) for completed

transactions; secondly, since authorization and authentication operations have different costs, they are

weighted in order to make them comparable to each other and finally their average is calculated. The

Future Internet Core Platform

Quality Assurance in FIWARE 36

resulting value is then checked with the table provided below in order to find the range which fits with

this value and thus the corresponding label can be identified. The operation cost to be taken into

account, as suggested for the case of Generic GE, is meant in terms of DB operations -of any type-

originated by each type of request. For example, on the one hand, an “authentication” request, in order

to be fulfilled, involves 30 DB operations; on the other hand, the corresponding “authorization” involves

only 2 DB operations. The ratio between the potential cost of the two operations is thus equal to

30/2=15. A half point of weight is then assigned for each unit of the resulting ratio (0,5 X 15) and the

result used as multiplying factor of the “authentication” most production point calculated earlier.

Finally, the two values of the most production point are averaged and the resulting value compared with

the ranges provided by the following table.

Authentication/Authorization

requests/second

 Label Value

A+++ > 591

A++ 541 – 590

A+ 481 – 540

A 391 – 480

B 271 – 390

C 141 – 270

D <140

 Table 18: Value ranges for performance (auth reqs/sec) evaluation

3.5. Generic GE

These are the GEs which not fit into the other categories. For labeling other GEs which do not fit in the

ones mentioned before, a ponderation should be done, comparing the functionality of the GE with one

reference functionality (for example, attribute updates). In order to do this, it must be considered:

- Number of operations in the database per request

- Connections with other systems

- Functionality complexity

For example, an NGSI attribute update makes 2 database operations (1 select and 1 update queries). If a

functionality makes 4 database operations, the functionality complexity appears to be similar, and it

makes no connections with other systems, then it would be considered like a 2 NGSI attributes update

query.

 Generic GEs not involving DB operations

Future Internet Core Platform

Quality Assurance in FIWARE 37

This category specializes the aforementioned “Generic GE” category to those components that on the

one hand do not fit with any dedicated category, but on the other hand they have in common the

characteristic of not using any DB system. Therefore this type of GE could be tested in a completely

isolated way, namely with no other systems connected.

 Completed request measuring

Firstly, starting from the output of the non-functional tests, the already measured response times and

the number of responses per second have to be taken into account in order to find the most production

point (the first point where the maximum responses per second rate is reached) for completed

transactions. This value is then directly compared with the table provided below in order to find the

range which fits with it and thus the label to be assigned.

Requests/second

 Label Value

A+++ > 7200

A++ 6701 – 7200

A+ 5901 – 6700

A 4701 – 5900

B 3201 – 4700

C 1600 – 3200

D <1600

Table 19: Value ranges for
performance (requests/sec)
evaluation

3.6 Generic GEs applied to PEP Proxy GE

This category defines a range of values for classifying the results coming out from the test carried out on

any implementation of the PEP Proxy GE.

 Completed request measuring

Likewise the originating category that this one specializes, firstly, the already measured response times

and the number of responses per second have to be taken into account in order to find the most

production point (the first point where the maximum responses per second rate is reached) for

completed transactions. This value is then directly compared with the table provided below in order to

find the range which fits with it and thus with the label to be assigned.

Future Internet Core Platform

Quality Assurance in FIWARE 38

Requests/second

 Label Value

A+++ > 1340

A++ 1221 – 1340

A+ 1061 – 1220

A 821 – 1060

B 561 – 820

C 281 – 560

D <280

Table 20: Value ranges for performance (requests/sec) evaluation (PEP Proxy)

4.5.1. Benchmarking for adjusting the non-functional results

Due to the possible hardware differences between different GEs’ performance tests, it is necessary to

adjust the metrics depending on the results of a benchmark.

For the adjustment mentioned before, the benchmark “Phoronix Test Suite” has been used. Inside

Phoronix, benchmark “pts/apache-1.6.1” was used. From this benchmark, a score is obtained that is

needed to get a weighting rate. Annex 3 proposes the steps to get this score.

To get this, we take as reference the value “16733.24”, which is the score obtained for a server

reference. With this reference value “x”, and the score “y” obtained by the benchmark, the ponderation

rate “z” is obtained with the formula z = y/x. For example, for a score of 22013.47, the weighting rate

would be 22013.47 /16733.24 = 1.315

Once the weighted rate has been found, it is easy to get the weight for a measure to be multiplied by

the value by the weighting rate when the measure is “lower is better”, and subdividing when the

measure is “higher is better”.

For example, if the weighting rate is 1.315, and we have a performance value of 600 NGSI attribute

request per second (higher is better), then we have to divide 600 by 1.315, which result is 456,27,

labelled with a ‘B’.

Future Internet Core Platform

Quality Assurance in FIWARE 39

4.6 Labelling FIWARE GEs

In order to validate the labelling model, a set of GEs were selected to test the model and obtained their

labels. The selected GEs (10 in total) have been tested both from functional and non-functional aspects,

so they are a subset of the overall tested GEs, but enough for demonstrating whether the model is valid

or it must be adjusted.

After gathering values for the defined FUR/NFR measures from all the observed GEs, here the summary:

Figure 12: Consolidated labelling (overall values) for 10 observed GEs

For instance, looking at Orion, the overall value is ‘A++’, with a higher value from functional-related

attributes (A+++) more than from its non-functional-related ones (A++). But in order to better

understand which attribute could be the one on which improving the rating with a further

implementation with priority, here in the following figures there is the detailed for the ‘two sides of the

story’ (FUR and NFR).

Figure 13: Consolidated functional labelling (detailed values) for 10 observed GEs

Future Internet Core Platform

Quality Assurance in FIWARE 40

Figure 14: Consolidated non-functional labelling (detailed values) for 10 observed GEs

The spreadsheet with the detailed labelling by GE and category is available at

https://forge.fiware.org/docman/view.php/7/5716/Labelling_Results_Func_Measures_v08.xlsx.

https://forge.fiware.org/docman/view.php/7/5716/Labelling_Results_Func_Measures_v08.xlsx

Future Internet Core Platform

Quality Assurance in FIWARE 41

5 Conclusions

This task was conceived with the goal to be an instrument to demonstrate and improve the FIWARE GEs

quality in order to make them more reliable and trusty. Along the process, the task has become very

useful for the GEs developers to understand better the behavior of their components and the limits they

had, allowing them to correct defects and improve documentation, performance, to make them more

stable or to provide better training courses.

The starting was not easy as there were many things to test, from different sources, having to test GEs

from very different nature and technologies, and overcoming the initial reluctance of collaboration since

the task was seen as an overhead and intrusive for some GE owners. But, slowly these drawbacks were

overpassed and the testing process became fluent and continuous.

Now, after several phases in the process some overall conclusions can be stated. There exists a

significant heterogeneity in the GEs quality, having more mature GEs and ready for market than others.

The stated labels are proof of that, having diversity of quality levels. Although there is always a room for

improvement in documentation and support for most of the GEs, both of them have improved

significantly during last year of the task. It can be also stated significant improvements in performance

from first iteration to the second and third one, due to the addressing of recommendations through the

iterative testing reports by the GE responsible, which is also a demonstration of the value this activity

can bring to FIWARE.

In near future, the main focus will be to enlarge number and type of tests and to automate the tests as

much as possible, including them as part of the software development process. Also the visualization of

the labels in the Catalogue will be updated automatically as soon as a new label was changed due to

new value in tested criteria. In the meantime a set of guidelines have been created in order to be able to

replicate all the conducted tests by anyone.

Future Internet Core Platform

Quality Assurance in FIWARE 42

ANNEX 1: Non-functional (stress) testing report

A1.1 Non-functional testing reports (for version 5.1)

Orion stress testing report (release 5.1)

Bosun stress testing report (release 5.1)

Cepheus stress testing report (release 5.1)

IDAS stress testing report (release 5.1)

KeyRock stress testing report (release 5.1)

Kurento stress testing report (release 5.1)

Proton stress testing report (release 5.1)

Wilma stress testing report (release 5.1)

IoTBroker stress testing report (release 5.1)

A1.2 Non-functional testing reports (for version 5.2)

Bosun stress testing report (release 5.2)

Cepheus stress testing report (release 5.2)

KeyRock stress testing report (release 5.2)

Kurento stress testing report (release 5.2)

Orion stress testing report (release 5.2)

Wilma stress testing report (release 5.2)

A1.3 Non-functional testing reports (for version 5.3)

Bundle Orion-IDAS-Cygnus stress testing report

Bundle Wilma-KeyRock-AuthZForce stress testing report

IoTBroker stress testing report (release 5.3)

AuthZForce stress testing report (release 5.3)

IDAS stress testing report (release 5.3)

KeyRock stress testing report (release 5.3)

Orion stress testing report (release 5.3)

Orion scalability testing report (release 5.3)

Wilma stress testing report (release 5.3)

Proton stress testing report (release 5.3)

https://forge.fiware.org/docman/view.php/7/5531/FIWARE-GEri_test_report_Orion_0_26_0+%281%29.docx
https://forge.fiware.org/docman/view.php/7/5526/FIWARE-GEri_test_report_Bosun_2_3_0+%281%29.docx
https://forge.fiware.org/docman/view.php/7/5527/FIWARE-GEri_test_report_Cepheus_0_1_4+%281%29.docx
https://forge.fiware.org/docman/view.php/7/5528/FIWARE-GEri_test_report_IDAS_1_31_1+%281%29.docx
https://forge.fiware.org/docman/view.php/7/5529/FIWARE-GEri_test_Keyrock_v1.3.docx
https://forge.fiware.org/docman/view.php/7/5530/FIWARE-GEri_test_report_Kurento_6_2_0+%281%29.docx
https://forge.fiware.org/docman/view.php/7/5532/FIWARE-GEri_test_report_PROTON_4_0+%281%29.docx
https://forge.fiware.org/docman/view.php/7/5524/FIWARE-GEri_test_PEPWilma_v1.5.docx
https://forge.fiware.org/docman/view.php/7/5525/FIWARE-GEri_test_Aeron_v1.1.docx.docx
https://forge.fiware.org/docman/view.php/7/5588/FIWARE-GEri_test_report_Bosun_2_5_0.docx
https://forge.fiware.org/docman/view.php/7/5589/FIWARE-GEri_test_report_Cepheus_0_1_8.docx
https://forge.fiware.org/docman/view.php/7/5618/FIWARE-GEri_test_Keyrock-5.2.0_v1.0.docx
https://forge.fiware.org/docman/view.php/7/5590/FIWARE-GEri_test_report_Kurento_6_5_0.docx
https://forge.fiware.org/docman/view.php/7/5547/FIWARE-GEri_test_report_Orion_1.0.0.docx
https://forge.fiware.org/docman/view.php/7/5617/FIWARE-GEri_test_PEPWilma-5.2.0_v1.0.docx
https://forge.fiware.org/docman/view.php/7/5657/FIWARE-GEri_test_Bundle_IDAS_Orion_Cygnus_5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5614/FIWARE-GEri-bundle_test_authzforce-wilma-keyrock-5.3.0.doc
https://forge.fiware.org/docman/view.php/7/5615/FIWARE-GEri_test_Aeron_5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5616/FIWARE-GEri_test_AZforce-5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5619/FIWARE-GEri_test_IDAS_5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5639/FIWARE-GEri_test_Keyrock-5.3.0.doc
https://forge.fiware.org/docman/view.php/7/5687/FIWARE-GEri_test_Orion_5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5620/FIWARE-GEri_Scalability_Test_Orion-5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5640/FIWARE-GEri_test_PEPWilma-5.3.0.docx
https://forge.fiware.org/docman/view.php/7/5725/FIWARE-GEri_test_Proton_5.3.0.docx

Future Internet Core Platform

Quality Assurance in FIWARE 43

ANNEX 2: Functional testing report

The functional testing activity reports the results in different spreadsheets listed below:

1. The spreadsheet containing the Test Cases list and the Test execution information used and

reported by the functional testing action can be downloaded here.

2. The spreadsheet containing the Academy Courses verifications and results can be downloaded

here.

https://forge.fiware.org/docman/view.php/7/5533/D1.1.8-Report%2Bon%2BFIWARE%2BQA%2BTesting-Functional%2BTest.xls
https://forge.fiware.org/docman/view.php/7/5533/D1.1.8-Report%2Bon%2BFIWARE%2BQA%2BTesting-Functional%2BTest.xls
https://forge.fiware.org/docman/view.php/7/5713/FIWARE-Academy_Courses_Test.xls

