
Connecting to Robots
FIWARE Summit - Malaga - 15/Dec/2016

Jaime Martin Losa

eProsima CEO. I2ND Chapter – Advanced Middleware & Robotics

JaimeMartin@eProsima.com

mailto:JaimeMartin@eProsima.com

Agenda

 FIWARE Advanced Middleware: When to use it

• Fast RTPS

• KIARA

 ROS2 (Robot Operating System)

 DDS/RTPS Quick Introduction

• The Standard

• Architecture

• Shapes Demo

 Fast RTPS Hello World Example

 Connecting to ROS2 from FIWARE

• Fast RTPS

• FIROS2

1

FIWARE Advanced Middleware:

When to use it?

2

FIWARE Advanced Middleware: When to use it

 Real Time Requirements

• Latency measured in µSec

 High Throughput Requirements

• Take advantage of Pub/Sub Architecture

 Low bandwidth, intermittent and unreliable datalinks

• Radio networks

• Wifi

 Many to Many communications

 Decoupled architectures

 Different QoS over different datalinks and performance requirements.

 Efficient Data Models

3

FIWARE Advanced Middleware: When to use it

 eProsima Fast RTPS

• C++

• Full RTPS (Real Time Publish Subscribe) implementation

• RPC layer available through eProsima RPC over DDS

• Robotics Adoption (ROS2)

• Apache 2.0 License

 KIARA

• Java

• Complete RTPS implementation

□ No Support for large data (>64kb) yet

• RPC included

• LGPL License (Plans to migrate to Apache 2.0)

• Interoperable with Fast RTPS

4

ROS (Robot Operating System)

5

ROS2: Robotics de facto Standard

 The Robot Operating System (ROS) is a set of software libraries and

tools that help you build robot applications. From drivers to state-of-

the-art algorithms, and with powerful developer tools, ROS has what

you need for your next robotics project. And it's all open source. ROS

has become a de facto standard for Robotic applications.

 OSRF Sponsors: Bosh, DARPA, google, MathWorks, Nasa,

Nissan, Qualcomm, rethink robotics, ROS-Industrial Consortium,

Sandia National Laboratories, SICK, Willow Garage, Yujin Robot

6

DDS/RTPS Quick Introduction

7

Introduction: Everything is distributed

 Enterprise Internet

 Internet of Things

 Cloud Computing

 Industry 4.0

 …

 Next-generation systems needs:

• Scalability

• Integration & Evolution

• Robustness & Availability

• Performance

• Security

8

Challenge

 Everything is connected, and we should enable communication

between the different nodes.

 And this means:

• Common protocols

• Common Data Types

• Known interfaces

• Different QoS over different datalinks and performance requirements.

• Different comunications patterns.

• Broad platform and programming language support.

• Good Data Models!

9

DDS/RTPS: Standards-based Integration

Infrastructure for Critical Applications

10

Streaming

Data
Sensors Events

Real-Time

Applications

Enterprise

Applications Actuators

Family of Specifications

11

Broad Adoption

 Vendor independent

• API for portability

• Wire protocol for interoperability

 Multiple implementations

• 10 of API

• 8 support RTPS

 Heterogeneous

• C, C++, Java, .NET (C#, C++/CLI)

• Linux, Windows, VxWorks, other embedded & real• time

 Loosely coupled

12

DDS adopted by key programs in Europe

 European Air Traffic Control

• DDS proposed for interoperate ATC
centers

 Spanish Army

• DDS is mandated for C2 Interoperability
(ethernet, radio & satellite)

 UK Generic Vehicle Architecture

• Mandates DDS for vehicle comm.

• Mandates DDS-RTPS for interop.

13

US-DoD mandates DDS for data-distribution

 DISR (formerly JTA)

• DoD Information Technology
Standards Registry

 US Navy Open Architecture

 Army, OSD

• UCS, Unmanned Vehicle Control

 SPAWAR NESI

• Net-centric Enterprise Solutions for
Interoperability

• Mandates DDS for Pub-Sub SOA

14

RTPS Adoption

 ROS (Robotic Operating System)

 FIWARE

• EU R&D Software Platform

 Many Drone Companies

• 3D Robotics

• Magma UAVs

• …

15

DDS Architecture

16

DDS

 DDS (Data Distribution Service for Real-Time Systems) is

a OMG specification for a pub/sub data centric model

(DCPS, Data Centric Publish/Subscribe) for Real-Time

data comms in distributed systems.

 DDS is a networking middleware that:

• Simplifies and Standardizes data flows in distributed real-time

systems.

• Provides robust comms (no single point of failure) and efficient

(minimum latency)

• Provides all kind of QoS to shape the data flows and deliver

predictable results.

17

DDS

DDS uses the concept of Global Data Space. In this Space we define

topics of data, and the publishers publish samples of these topics.

DDS distributes these samples to all the subscribers of those topics.

Any node can be a publisher or a subscriber.

18

Why DDS? Decoupled model

 Space (location)

• Automatic Discovery ensures network topology independence

 Redundancy:

• It is possible to configure redundant publishers and subscribers,

primary/secundary and takeover schemas supported

 Time:

• The reception of data does not need to be synchronous with the writing. A

subscriber may, if so configured, receive data that was written even before the

subscriber joined the network.

 Platform:

• Applications do not have to worry about data representation, processor

architecture, Operating System, or even programming language on the other side

 Implementation:

• DDS Protocol is also an standard. Different implementations interoperate.

19

Why DDS? Fully

configurable
QoS Policy

DURABILITY

HISTORY

READER DATA LIFECYCLE

WRITER DATA LIFECYCLE

LIFESPAN

ENTITY FACTORY

RESOURCE LIMITS

RELIABILITY

TIME BASED FILTER

DEADLINE

CONTENT FILTERS

V
o

la
ti

li
ty

U
s
e
r Q

o
S

D
e
li
v
e
ry

P
re

s
e
n

ta
tio

n
R

e
d

u
n

d
a
n

c
y

In
fr

a
s
tr

u
c
tu

re

T
ra

n
s
p

o
rt

QoS Policy

USER DATA

TOPIC DATA

GROUP DATA

PARTITION

PRESENTATION

DESTINATION ORDER

OWNERSHIP

OWNERSHIP STRENGTH

LIVELINESS

LATENCY BUDGET

TRANSPORT PRIORITY

DDS Infrastructure

• Standard API for

portability.

• RTPS can be

implemented over

any transport

• No central

Broker/Service

• Different Comm

channel per topic

Quality of Service: QoS

The DDS Model

Domain Participant

Data

Reader

Node

Subscriber

Data Domain

Subscriber

Data

Writer

Data

Writer

Data

Reader

Data

Reader

Data

Writer

Publisher

Topic

Publisher

Topic Topic

Topics, Instances and Keys

• Topic: A set of similar objects, sharing a

common Data Type

• Instance: A particular object of the set

• Key: Fields of the Data Type to identify an

object.
Topic: RadarTrack

Key: Flight ID

Instance

Flight ID=

MAD-BER57

Instance

Flight ID=

PAR-BER89

Instance

Flight ID=

PAR-BER89

Qos

Applied by

Instance.

Demo

const long STR_LEN=24;

struct ShapeType {

string<MSG_LEN> color; //@key

long x;

long y;

long shapesize;

};

• 3 Topics:

• Square, Circle,

Triangle

• Color is the KEY

Fast RTPS Hands On:
A Hello World

25

Hands-on Example (C++)

Type

Definition

MyType.idl

fastrtpsgen

MyType.h

MyTypePubSubTypes.c
MyTypePublisher.cxx

MyTypeSubscriber.cxx

MyType.sln

Publisher Subscriber.exe

Three minutes to a running app!!

1. Define your data

2. Create your project

3. Build

4. Run: publisher subscriber

compiler

file://vmware-host/Shared Folders/dom/RTI45b_2GO/hands_on_example/Message.idl
file://vmware-host/Shared Folders/dom/RTI45b_2GO/hands_on_example/run_nddsgen.bat
file://vmware-host/Shared Folders/dom/RTI45b_2GO/hands_on_example/Message-vs2005.sln
file://vmware-host/Shared Folders/dom/RTI45b_2GO/hands_on_example/Message-vs2005.sln
file://vmware-host/Shared Folders/dom/RTI45b_2GO/hands_on_example/objs/i86Win32VS2005/Message_publisher.exe

Example #1 - Hello World

We will use this data-type :

const long MSG_LEN=256;

struct HelloMsg {

string<MSG_LEN> user; //@key

string<MSG_LEN> msg;

};

Generate type support (for C++)

[Windows]

• Look at the directory you should see:
– solution-x64Win64VS2015.sln
– And Several other files…

• Open the Solution:

• Compile from visual studio

fastrtpsgen HelloMsg.idl -example x64Win64VS2015\

-replace -ppDisable

Execute the program [Windows]

• C++:

– On one window run:

• bin\x64Win64VS2015\HelloMsgPublisherSubscriberd.exe publisher

– On another window run:
• bin\x64Win64VS2015\HelloMsgPublisherSubscriberd.exe subscriber

• You should see the subscribers getting an empty string…

Writting some data

• Modify HelloMsgPublisher.cxx:

/* Main loop */

do

{

if(ch == 'y')

{

st.msg() = std::string("Hello using cpp ") +

std::to_string(msgsent);

mp_publisher->write(&st); ++msgsent;

cout << "Sending sample, count=" << msgsent <<

",send another sample?(y-yes,n-stop): ";

}

How to Get Data? (Listener-

Based)// Listener code

void HelloMsgSubscriber::SubListener::onNewDataMessage(Subscriber* sub)

{

// Take data

HelloMsg st;

if(sub->takeNextData(&st, &m_info))

{

if(m_info.sampleKind == ALIVE)

{

// Print your structure data here.

++n_msg;

cout << "Sample received, count=" << n_msg << endl;

cout << " " << st.msg() << endl;

}

}

}

Connecting to ROS2 from FIWARE

32

FIROS2: ROS2 to Fast RTPS

33

FIROS2: ROS2 to Fast RTPS

34

FIROS2: Roadmap

 Bridge to Orion Context Broker

35

Want to know more?

• https://catalogue.fiware.org/enablers/fast-rtps

• https://catalogue.fiware.org/enablers/kiara-advanced-

middleware

• www.eProsima.com

• Youtube: https://www.youtube.com/user/eprosima

• Mail: JaimeMartin@eProsima.com

• Phone: +34 607913745

• Twitter: @jaimemartinlosa

• http://es.slideshare.net/JaimeMartin-eProsima

http://www.eprosima.com/
http://www.eprosima.com/
http://www.eprosima.com/
https://www.youtube.com/user/eprosima
mailto:JaimeMartin@eProsima.com
http://es.slideshare.net/JaimeMartin-eProsima

Thank you!

http://fiware.org

Follow @FIWARE on Twitter

