
FIWARE Data Management in

High Availability

Federico M. Facca (Martel Innovate)

Head of Martel Lab, FIWARE TSC Member

federico.facca@martel-innovate.com

@chicco785

1

Outline

 Basic High Availability Principles

 How to apply HA principles to FIWARE?

 On going and future activities in FIWARE

Basic High Availability Principles

2

3

What is High Availability?

High availability is a characteristic of a

system, which aims to ensure an agreed

level of operational performance, usually

uptime, for a higher than normal period

[https://en.wikipedia.org/wiki/High_availability]

Why do I need high availability?

4

Keep your

customers happy

5

Eliminate single points of failure

6

Ensure reliable crossover

7

Detect failures as they occur

Cool I want to have my service in High

Availability!

8

To define an HA architecture for your service,

you need to understand how you service works

9

Stateless vs Stateful services

 Stateless services

 The output of the service depends only on the input

 Easy to scale and distribute

 Stateful

 The output of the service depends on the input and on

a set of information stored by the service itself

 Not so easy to scale and distribute (maintaining a

consistent state)If your services is stateless, things are very

easy

10

CAP Theorem

 The CAP theorem states that it is impossible for a

distributed computer system to simultaneously provide all

three of the following guarantees:

 Consistency: Every read receives the most recent write or an

error

 Availability: Every request receives a response, without

guarantee that it contains the most recent version of the

information

 Partition tolerance: The system continues to operate despite an

arbitrary number of messages being dropped by the network

between nodes

 I.e. when you implement HA in a stateful service, you can

choose of being CA, AP, CP. In general you strive to AP and

eventually consistent.

When your services is stateful, you need to

decide what you are ready to give up (or

eventually the specific database you use is

already deciding for you)

11

How HA relates to Cloud architectures?

 You do not need Cloud solutions to implement

high availability but…

 Cloud solutions simplifies the implementation of

High Available architectures

 High Available architectures are a prerequisite to

implement many scalable services

12

Queue centric workflow patterns

13

Scalability patterns

How to apply HA principles to FIWARE?

14

15

Context Broker

 Context Broker is perhaps the most

used GE 

 It includes to components:

 The API

 The Backend

 The API is HTTP based

 The Backend in based on MongoDB

 How to make it high available?

 An easy crossover mechanism for

HTTP APIs are Load Balancers

 MongoDB has is proprietary HA

mechanism (replica set)

Context Broker

MongoDB

16

Context Broker

Context Broker

MongoDB

Context Broker

MongoDB

Context Broker

MongoDB

HA Proxy HA Proxy HA Proxy

MongoDB replica set

Virtual IP

1. Provide high available and partion tolerant distributed data

2. Eventually consistent

3. MongoDB HA solutions use quora mechanism for evaluate consistency,

so O as to be an odd number (max actually is 7)

1. Provides the reliable cross over (i.e. transparent access to different

instances)

2. Provides the transparent detection failure

3. Relies on virtual IP mechanism

1. N-instances of context broker, removing single point of failure

2. You can have M HA Proxy and O Mongos DB (this are not vertical silos)

17

Example configuration

 Load Balancer 1: lb1.example.com, IP address: 192.168.0.100

 Load Balancer 2: lb2.example.com, IP address: 192.168.0.101

 Context Broker 1: ctx1.example.com, IP address: 192.168.0.102

 Context Broker 2: ctx2.example.com, IP address: 192.168.0.103

 Mongo DB 1: mdb1.example.com, IP address: 192.168.0.104

 Mongo DB 2: mdb2.example.com, IP address: 192.168.0.105

 Mongo DB 3: mdb3.example.com, IP address: 192.168.0.106

 Shared IP=192.168.0.99

18

HA Proxy Installation (LB1/LB2)

 Install HA Proxy (ubuntu)

 sudo apt-get install haproxy

 Configure HA Proxy to start at boot time

 sudo nano /etc/default/haproxy

 change the value of ENABLED to “1”

 Configure HA Proxy

 sudo nano /etc/haproxy/haproxy.cfg

...

defaults

log global

mode tcp

option tcplog

...

frontend www

bind

load_balancer_anchor_IP:1026

default_backend ctx_pool

backend ctx_pool

balance roundrobin

mode tcp

server ctx1 ctx1_private_IP:1026

check

server ctx2 ctx2_private_IP:1026

check

19

Install keepalived active/passive (LB1/LB2)

 Install keepalived (ubuntu)

 sudo apt-get install keepalived

 Ensure HA Proxy will be able to bind to

non local addresses

 sudo nano /etc/sysctl.conf

 change the value of

net.ipv4.ip_nonlocal_bind to “1”

 sudo sysctl -p

 Configure keepalived

 sudo nano

/etc/keepalived/keepalived.conf

 For LB2, change state to BACKUP

and priority to 100

global_defs {

…

}

Check if haproxy is still working

vrrp_script chk_haproxy {

script "killall -0 haproxy"

interval 2

weight 2

}

Configuation for the virtual

Interface

vrrp_instance VI_1 {

interface eth0

state MASTER

priority 101

virtual_router_id 51

virtual_ipaddress {

192.168.0.99

}

track_script {

chk_haproxy

}

}

Active/Passive is not the best solution… you can also run an Active/Active

load balancer. That is a bit more complex though.

Keepalived can be replaced with more complex monitor and management

solutions

like corosynch/pacemaker combination

20

Install MongoDB Replica Set (MDB1, MDB2,

MDB3)
 Install MongoDB (ubuntu xenial)

 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
EA312927

 echo "deb http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.4
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

 sudo apt-get update

 sudo apt-get install -y mongodb-org

 Start mongodb on each node

 mongod --replSet ”orion_rs"

 Access a mongodb instance and configure the replicaset

 mongo

 In mongo console type:

 rs.initiate()

 rs.add(" mdb2.example.com ")

 rs.add(" mdb3.example.com ")

 rs.conf()

 rs.status()

21

Install ContextBroker (CTX1, CTX2)

 Install Context Broker (centos/rh)

 Create a file fiware.repo in

/etc/yum.repos.d/ with the following

lines:

 [fiware]

 name=Fiware Repository

 baseurl=http://repositories.lab.fiware.or

g/repo/rpm/$releasever

 gpgcheck=0

 enabled=1

 yum install contextBroker

 Configure the Context Broker

 sudo nano /etc/sysconfig/contextBroker

 Start the Context Broker

 /etc/init.d/contextBroker start

…

BROKER_DATABASE_HOST=mdb1.example.co

m,mdb2.example.com,mdb3.example.com

BROKER_DATABASE_NAME=orion

Replica set configuration. Note

that if you set this parameter, the

BROKER_DATBASE_HOST is interpreted

as the list of host (or host:port)

separated by commas to use as##

replica set seed list (single

element lists are also allowed). If

BROKER_DATABASE_RPL_SET parameter is

unset, Orion CB assumes that the

BROKER_DATABASE_HOST is an stand-

alone mongod instance

BROKER_DATABASE_RPLSET=orion_rs

You made it!

22

23

Additional considerations

 Scale up

 Scaling up context broker processing capacity requires only to add a

new entry in the HA Proxy and deploy a new instance of context broker

 Hardware failures

 If all your service instances (context broker, ha proxy, mongodb) run on

the same physical server you achieved only HA within respect software

failures

 Shared configuration

 For many of the services large part of the configuration is shared, plans

for easy ways to keep it in synch (e.g. NFS, github)

24

What about other GEs?

 STH and IoT Agent have similar architecture to the Context Broker

 You can adopt a similar strategy

 Cygnus is based on Apache FLUME

 It can be configured HA with Active/Passive modality using a load

balancer and at least 2 Cygnus agents

 Some are HA by design

 COSMOS is based on Hadoop and Hadoop is basically an HA cluster

On going and future activities in FIWARE

25

Did it look complex?

26

Data
models

Enablers

Architecture
Patterns

Ap

p

Ap

p
GE

GE

GE
Ap

p

City

Sta

rtu

p
Ap

p
Ap

p
City

Sta

rtu

p

Smart Security

• Common architecture patterns: e.g.

scalability pattern

• Common generic enablers: e.g. orion

context-broker

• Common data models: e.g. geo-

location

• Specific architecture patterns: e.g.

secured data access pattern

• Specific and customised generic

enablers: e.g. security risk detection

filters for kurento media server

• Specific data models: e.g. security’s

events

Smart

Security

Application

“recipe”

28

1. Analyse HA architectures for the different Data and IoT Management

enablers

2. Creating Docker compose recipes to allow easy deployment of HA

enablers

3. Making them available in FIWARE Lab to experimenters

Do you have questions?

Do you want to contribute?

29

Contact Us

w w w.mart e l - innov at e.com

Federico M. Facca

Head of Martel Lab

federico.facca@martel-innovate.com

Dorfstrasse 73 – 3073

Gümligen (Switzerland)

0041 78 807 58 38

Thank you!

http://fiware.org

Follow @FIWARE on Twitter

