
FIWARE Data Management in

High Availability

Federico M. Facca (Martel Innovate)

Head of Martel Lab, FIWARE TSC Member

federico.facca@martel-innovate.com

@chicco785

1

Outline

 Basic High Availability Principles

 How to apply HA principles to FIWARE?

 On going and future activities in FIWARE

Basic High Availability Principles

2

3

What is High Availability?

High availability is a characteristic of a

system, which aims to ensure an agreed

level of operational performance, usually

uptime, for a higher than normal period

[https://en.wikipedia.org/wiki/High_availability]

Why do I need high availability?

4

Keep your

customers happy

5

Eliminate single points of failure

6

Ensure reliable crossover

7

Detect failures as they occur

Cool I want to have my service in High

Availability!

8

To define an HA architecture for your service,

you need to understand how you service works

9

Stateless vs Stateful services

 Stateless services

 The output of the service depends only on the input

 Easy to scale and distribute

 Stateful

 The output of the service depends on the input and on

a set of information stored by the service itself

 Not so easy to scale and distribute (maintaining a

consistent state)If your services is stateless, things are very

easy

10

CAP Theorem

 The CAP theorem states that it is impossible for a

distributed computer system to simultaneously provide all

three of the following guarantees:

 Consistency: Every read receives the most recent write or an

error

 Availability: Every request receives a response, without

guarantee that it contains the most recent version of the

information

 Partition tolerance: The system continues to operate despite an

arbitrary number of messages being dropped by the network

between nodes

 I.e. when you implement HA in a stateful service, you can

choose of being CA, AP, CP. In general you strive to AP and

eventually consistent.

When your services is stateful, you need to

decide what you are ready to give up (or

eventually the specific database you use is

already deciding for you)

11

How HA relates to Cloud architectures?

 You do not need Cloud solutions to implement

high availability but…

 Cloud solutions simplifies the implementation of

High Available architectures

 High Available architectures are a prerequisite to

implement many scalable services

12

Queue centric workflow patterns

13

Scalability patterns

How to apply HA principles to FIWARE?

14

15

Context Broker

 Context Broker is perhaps the most

used GE

 It includes to components:

 The API

 The Backend

 The API is HTTP based

 The Backend in based on MongoDB

 How to make it high available?

 An easy crossover mechanism for

HTTP APIs are Load Balancers

 MongoDB has is proprietary HA

mechanism (replica set)

Context Broker

MongoDB

16

Context Broker

Context Broker

MongoDB

Context Broker

MongoDB

Context Broker

MongoDB

HA Proxy HA Proxy HA Proxy

MongoDB replica set

Virtual IP

1. Provide high available and partion tolerant distributed data

2. Eventually consistent

3. MongoDB HA solutions use quora mechanism for evaluate consistency,

so O as to be an odd number (max actually is 7)

1. Provides the reliable cross over (i.e. transparent access to different

instances)

2. Provides the transparent detection failure

3. Relies on virtual IP mechanism

1. N-instances of context broker, removing single point of failure

2. You can have M HA Proxy and O Mongos DB (this are not vertical silos)

17

Example configuration

 Load Balancer 1: lb1.example.com, IP address: 192.168.0.100

 Load Balancer 2: lb2.example.com, IP address: 192.168.0.101

 Context Broker 1: ctx1.example.com, IP address: 192.168.0.102

 Context Broker 2: ctx2.example.com, IP address: 192.168.0.103

 Mongo DB 1: mdb1.example.com, IP address: 192.168.0.104

 Mongo DB 2: mdb2.example.com, IP address: 192.168.0.105

 Mongo DB 3: mdb3.example.com, IP address: 192.168.0.106

 Shared IP=192.168.0.99

18

HA Proxy Installation (LB1/LB2)

 Install HA Proxy (ubuntu)

 sudo apt-get install haproxy

 Configure HA Proxy to start at boot time

 sudo nano /etc/default/haproxy

 change the value of ENABLED to “1”

 Configure HA Proxy

 sudo nano /etc/haproxy/haproxy.cfg

...

defaults

log global

mode tcp

option tcplog

...

frontend www

bind

load_balancer_anchor_IP:1026

default_backend ctx_pool

backend ctx_pool

balance roundrobin

mode tcp

server ctx1 ctx1_private_IP:1026

check

server ctx2 ctx2_private_IP:1026

check

19

Install keepalived active/passive (LB1/LB2)

 Install keepalived (ubuntu)

 sudo apt-get install keepalived

 Ensure HA Proxy will be able to bind to

non local addresses

 sudo nano /etc/sysctl.conf

 change the value of

net.ipv4.ip_nonlocal_bind to “1”

 sudo sysctl -p

 Configure keepalived

 sudo nano

/etc/keepalived/keepalived.conf

 For LB2, change state to BACKUP

and priority to 100

global_defs {

…

}

Check if haproxy is still working

vrrp_script chk_haproxy {

script "killall -0 haproxy"

interval 2

weight 2

}

Configuation for the virtual

Interface

vrrp_instance VI_1 {

interface eth0

state MASTER

priority 101

virtual_router_id 51

virtual_ipaddress {

192.168.0.99

}

track_script {

chk_haproxy

}

}

Active/Passive is not the best solution… you can also run an Active/Active

load balancer. That is a bit more complex though.

Keepalived can be replaced with more complex monitor and management

solutions

like corosynch/pacemaker combination

20

Install MongoDB Replica Set (MDB1, MDB2,

MDB3)
 Install MongoDB (ubuntu xenial)

 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
EA312927

 echo "deb http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.4
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

 sudo apt-get update

 sudo apt-get install -y mongodb-org

 Start mongodb on each node

 mongod --replSet ”orion_rs"

 Access a mongodb instance and configure the replicaset

 mongo

 In mongo console type:

 rs.initiate()

 rs.add(" mdb2.example.com ")

 rs.add(" mdb3.example.com ")

 rs.conf()

 rs.status()

21

Install ContextBroker (CTX1, CTX2)

 Install Context Broker (centos/rh)

 Create a file fiware.repo in

/etc/yum.repos.d/ with the following

lines:

 [fiware]

 name=Fiware Repository

 baseurl=http://repositories.lab.fiware.or

g/repo/rpm/$releasever

 gpgcheck=0

 enabled=1

 yum install contextBroker

 Configure the Context Broker

 sudo nano /etc/sysconfig/contextBroker

 Start the Context Broker

 /etc/init.d/contextBroker start

…

BROKER_DATABASE_HOST=mdb1.example.co

m,mdb2.example.com,mdb3.example.com

BROKER_DATABASE_NAME=orion

Replica set configuration. Note

that if you set this parameter, the

BROKER_DATBASE_HOST is interpreted

as the list of host (or host:port)

separated by commas to use as##

replica set seed list (single

element lists are also allowed). If

BROKER_DATABASE_RPL_SET parameter is

unset, Orion CB assumes that the

BROKER_DATABASE_HOST is an stand-

alone mongod instance

BROKER_DATABASE_RPLSET=orion_rs

You made it!

22

23

Additional considerations

 Scale up

 Scaling up context broker processing capacity requires only to add a

new entry in the HA Proxy and deploy a new instance of context broker

 Hardware failures

 If all your service instances (context broker, ha proxy, mongodb) run on

the same physical server you achieved only HA within respect software

failures

 Shared configuration

 For many of the services large part of the configuration is shared, plans

for easy ways to keep it in synch (e.g. NFS, github)

24

What about other GEs?

 STH and IoT Agent have similar architecture to the Context Broker

 You can adopt a similar strategy

 Cygnus is based on Apache FLUME

 It can be configured HA with Active/Passive modality using a load

balancer and at least 2 Cygnus agents

 Some are HA by design

 COSMOS is based on Hadoop and Hadoop is basically an HA cluster

On going and future activities in FIWARE

25

Did it look complex?

26

Data
models

Enablers

Architecture
Patterns

Ap

p

Ap

p
GE

GE

GE
Ap

p

City

Sta

rtu

p
Ap

p
Ap

p
City

Sta

rtu

p

Smart Security

• Common architecture patterns: e.g.

scalability pattern

• Common generic enablers: e.g. orion

context-broker

• Common data models: e.g. geo-

location

• Specific architecture patterns: e.g.

secured data access pattern

• Specific and customised generic

enablers: e.g. security risk detection

filters for kurento media server

• Specific data models: e.g. security’s

events

Smart

Security

Application

“recipe”

28

1. Analyse HA architectures for the different Data and IoT Management

enablers

2. Creating Docker compose recipes to allow easy deployment of HA

enablers

3. Making them available in FIWARE Lab to experimenters

Do you have questions?

Do you want to contribute?

29

Contact Us

w w w.mart e l - innov at e.com

Federico M. Facca

Head of Martel Lab

federico.facca@martel-innovate.com

Dorfstrasse 73 – 3073

Gümligen (Switzerland)

0041 78 807 58 38

Thank you!

http://fiware.org

Follow @FIWARE on Twitter

