
Access to short term context
history using Comet

Germán Toro del Valle
Technology Specialist at Telefónica I+D (http://tid.es/en)
LinkedIn: https://www.linkedin.com/in/gtorodelvalle
Email: german.torodelvalle@telefonica.com
Twitter: @gtorodelvalle

http://tid.es/en
https://www.linkedin.com/in/gtorodelvalle
mailto:german.torodelvalle@telefonica.com
http://twitter.com/gtorodelvalle

Agenda
1. Introduction

2. Architecture

3. Data schemas & pre-aggregation

4. API

5. Installation

6. Configuration

7. Running

8. References

1. Introduction

1. Introduction
Why? (memory matters…)

• The Context Broker
only stores the latest
attribute values:
– Event-driven

action-oriented paradigm

• The Short Time Historic
adds memory into the
equation:
– Continuous improvement

paradigm

• Code name:
– Comet

• Time series database:
– Optimized to deal

with values indexed
in time

– Raw data vs.
Aggregated data

– Basic aggregation
concepts:

• Range
• Resolution
• Origin
• Offset

1. Introduction
What? (data evolution in time…)

1. Introduction
How? (the “best” solution…)

• Best technical
solution:

http://influxdb.com/
http://opentsdb.net/
http://info.mapr.com/resources-ebook-Time-Series-Databases.html
https://www.mapr.com/

1. Introduction
How? (... is not always the “best”)

• Collateral aspects to
take into
consideration:
– Risk:

• Maturity
• Performance
• Expertise

– Flexibility (future
evolution)

– Current inversions

1. Introduction
How? (birds-eye functioning: formal)

Cygnus

Orion
Context
Broker

notification

update
(raw & aggregated)

subscribeContext

query (raw & aggregated)

Client

1. Introduction
How? (birds-eye functioning: minimal)

subscribeContext

update

notification

query (raw & aggregated)

Client

Orion
Context
Broker

2. Architecture

2. Architecture
Node application

• Database:
– MongoDB

• Optimized for time
series functioning
(specific schemas +
pre-aggregation)

• Web server:
– hapi

• Exposing the
component API

– Data registration
– Data retrieval
– Data deletion
– Log level

3. Data schemas & pre-aggregation

3. Data schemas &
pre-aggregation

• Although the STH stores the evolution of (raw) data
(i.e., attributes values) in time, its real power comes
from the storage of aggregated data

• The STH should be able to respond to queries such as:
– Give me the maximum temperature of this room during

the last month (range) aggregated by day (resolution)
– Give me the mean temperature of this room today (range)

aggregated by hour or even minute (resolution)
– Give me the standard deviation of the temperature of this

room this last year (range) aggregated by day (resolution)
– Give me the number of times the air conditioner of this

room was switched on or off last Monday (range)
aggregated by hour

• Numeric pre-aggregation:
attribute:001 -> 111 (on Valentine’s day)

{
 "_id": {
 "attrName": "attribute:001",
 "attrType": "Number",
 "origin": ISODate("2016-02-01T00:00:00Z"),
 "resolution": "day"
 },
 "points": [
 …,
 {
 "offset": 14,
 "samples": 1,
 "sum": 111,
 "sum2": 12321,
 "min": 111,
 "max": 111
 },
 …
]
}

attribute:001 -> 222 (on Valentine’s day)

{
 "_id": {
 "attrName": "attribute:001",
 "attrType": "Number",
 "origin": ISODate("2016-02-01T00:00:00Z"),
 "resolution": "day"
 },
 "points": [
 …,
 {
 "offset": 14,
 "samples": 2,
 "sum": 333,
 "sum2": 61605,
 "min": 111,
 "max": 222
 },
 …
]
}

attribute:001 -> 333 (on Valentine’s day)

{
 "_id": {
 "attrName": "attribute:001",
 "attrType": "Number",
 "origin": ISODate("2016-02-01T00:00:00Z"),
 "resolution": "day"
 },
 "points": [
 …,
 {
 "offset": 14,
 "samples": 3,
 "sum": 666,
 "sum2": 172494,
 "min": 111,
 "max": 333
 },
 …
]
}

3. Data schemas &
pre-aggregation

• Calculating the
aggregated data
needed to respond to
the previous queries
from the raw data
would be highly
inefficient and
repetitive

• Solution:
– Data schemas &

pre-aggregation

• Textual pre-aggregation:
attribute:001 -> “ON” (on Valentine’s day)

{
 "_id": {
 "attrName": "attribute:001",
 "attrType": "Text",
 "origin": ISODate("2016-02-01T00:00:00Z"),
 "resolution": "day"
 },
 "points": [
 …,
 {
 "offset": 14,
 "samples": 1,
 "occur": {
 “ON”: 1
 }
 },
 …
]
}

attribute:001 -> “OFF” (on Valentine’s day)

{
 "_id": {
 "attrName": "attribute:001",
 "attrType": "Text",
 "origin": ISODate("2016-02-01T00:00:00Z"),
 "resolution": "day"
 },
 "points": [
 …,
 {
 "offset": 14,
 "samples": 2,
 "occur": {
 “ON”: 1,
 “OFF”: 1
 }
 },
 …
]
}

attribute:001 -> “ON” (on Valentine’s day)

{
 "_id": {
 "attrName": "attribute:001",
 "attrType": "Text",
 "origin": ISODate("2016-02-01T00:00:00Z"),
 "resolution": "day"
 },
 "points": [
 …,
 {
 "offset" : 14,
 "samples" : 3,
 “occur”: {
 “ON”: 2,
 “OFF”: 1
 }
 },
 …
]
}

3. Data schemas &
pre-aggregation

• Calculating the
aggregated data
needed to respond to
the previous queries
from the raw data
would be highly
inefficient and
repetitive

• Solution:
– Data schemas &

pre-aggregation

4. API

4. API
Raw data retrieval (NGSI v1): pagination

GET /STH/v1/contextEntities
 /type/<entityType>

 /id/<entityId>
 /attributes/<attrName>
 ?hLimit=10
 &hOffset=0
 &dateFrom=2016-01-01T00:00:00.000Z
 &dateTo=2016-03-30T23:59:59.999Z
 HTTP/1.1

Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Raw data retrieval (NGSI v1): pagination

GET /STH/v1/contextEntities
 /type/<entityType>
 /id/<entityId>
 /attributes/<attrName>
 ?lastN=10
 &dateFrom=2016-01-01T00:00:00.000Z
 &dateTo=2016-03-30T23:59:59.999Z
 HTTP/1.1

Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Raw data retrieval (NGSI v1): response

{
 "contextResponses": [
 {
 "contextElement": {
 "attributes": [
 {
 "name": "attribute:001",
 "values": [
 {
 "recvTime": "2016-02-14T13:43:33.306Z",
 "attrValue": "111"
 },
 {
 "recvTime": "2016-02-14T16:55:23.617Z",
 "attrValue": "222"
 },
 ...

4. API
Raw data retrieval (NGSI v1): response

 ...
 {
 "recvTime": "2016-02-14T21:35:11.339Z",
 "attrValue": "333"
 }
]
 "id": "Entity:001",
 "isPattern": false,
 "isPattern": "Entity",
 },
 "statusCode": {
 "code": "200",
 "reasonPhrase": "OK"
 }
 }
]
}

4. API
Aggregated data retrieval (NGSI v1)

GET /STH/v1/contextEntities
 /type/<entityType>
 /id/<entityId>
 /attributes/<attrName>
 ?aggrMethod=sum
 &aggrPeriod=day
 &dateFrom=2016-01-01T00:00:00.000Z
 &dateTo=2016-03-30T23:59:59.999Z
 HTTP/1.1

Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Aggregated data retrieval (NGSI v1)

{
 "contextResponses": [
 {
 "contextElement": {
 "attributes": [
 {
 "name": "attribute:001",
 "values": [
 {
 "_id": {
 "attrName": "attribute:001",
 "origin": "2016-02-14T00:00:00.000Z",
 "resolution": "day"
 },
 "points": [
 {
 "offset": 14,
 "samples": 3,
 "sum": 666
 }
]
 }
 ...

4. API
Aggregated data retrieval (NGSI v1)

 ...
]
 }
],
 "id": "Entity:001",
 "isPattern": false,
 "type": "Entity"
 },
 "statusCode": {
 "code": "200",
 "reasonPhrase": "OK"
 }
 }
]
}

4. API
Attribute data removal (NGSI v1)

DELETE /STH/v1/contextEntities
 /type/<entityType>
 /id/<entityId>
 /attributes/<attrName>

HTTP/1.1
Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Entity data removal (NGSI v1)

DELETE /STH/v1/contextEntities
 /type/<entityType>
 /id/<entityId>

HTTP/1.1
Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Service path data removal (NGSI v1)

DELETE /STH/v1/contextEntities
HTTP/1.1

Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Log level retrieval (NGSI v1)

GET /admin/log
 HTTP/1.1

Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

4. API
Log level update (NGSI v1)

PUT /admin/log
 ?level=debug
 HTTP/1.1

Host <sth-host>:<sth-port>
Fiware-Service: testservice
Fiware-ServicePath: /testservicepath
X-Auth-Token: ABC...

5. Installation

5. Installation
Nice and simple :)

1. From Github:

> git clone
https://github.com/telefonicaid/fiware-sth
-comet

> npm install

2. From Docker:

> docker pull fiware/sth-comet

> docker run -t -i fiware/sth-comet
/bin/bash

https://github.com/telefonicaid/fiware-sth-comet
https://github.com/telefonicaid/fiware-sth-comet
https://github.com/telefonicaid/fiware-sth-comet

6. Configuration

6. Configuration
Via environment variables and config.js

• The STH can be configured via enviroment
variables or via the config.js file

• Both are equivalent although environment
variables take precedence over the
config.js file

6. Configuration
Via environment variables and config.js

• Environment variables:
– STH_HOST: The host where the STH server will be started.

Optional. Default value: "localhost".
– STH_PORT: The port where the STH server will be listening.

Optional. Default value: "8666".
– FILTER_OUT_EMPTY : A flag indicating if the empty results

should be removed from the response. Optional. Default
value: "true".

– DEFAULT_SERVICE : The service to be used if not sent in the
Orion Context Broker notifications. Optional. Default value:
"testservice".

– DEFAULT_SERVICE_PATH : The service path to be used if not
sent in the Orion Context Broker notifications. Optional.
Default value: "/testservicepath".

6. Configuration
Via environment variables and config.js

• Environment variables:
– DATA_MODEL: The STH component supports 3 alternative data

models when storing the raw and aggregated data into the
database: 1) one collection per attribute, 2) one collection per
entity and 3) one collection per service path. The possible values
are: "collection-per-attribute", "collection-per-entity" and
"collection-per-service-path" respectively. Default value:
"collection-per-entity".

– DB_USERNAME: The username to use for the database connection.
Optional. Default value: "".

– DB_PASSWORD: The password to use for the database connection.
Optional. Default value: "".

– DB_URI: The URI to use for the database connection. This does
not include the 'mongo://' protocol part (see a couple of
examples below). Optional. Default value: "localhost:27017".

6. Configuration
Via environment variables and config.js

• Environment variables:
– REPLICA_SET: The name of the replica set to connect to, if

any. Default value: "".
– DB_PREFIX: The prefix to be added to the service for the

creation of the databases. Optional. Default value: "sth_".
– COLLECTION_PREFIX : The prefix to be added to the

collections in the databases. Optional. Default value: "sth_".
– POOL_SIZE: The default MongoDB pool size of database

connections. Optional. Default value: "5".
– WRITE_CONCERN : The write concern policy to apply when

writing data to the MongoDB database. Default value: "1".
– SHOULD_STORE: Flag indicating if the raw and/or aggregated

data should be persisted. Valid values are: "only-raw",
"only-aggregated" and "both". Default value: "both".

6. Configuration
Via environment variables and config.js

• Environment variables:
– REPLICA_SET: The name of the replica set to connect to, if

any. Default value: "".
– DB_PREFIX: The prefix to be added to the service for the

creation of the databases. Optional. Default value: "sth_".
– COLLECTION_PREFIX : The prefix to be added to the

collections in the databases. Optional. Default value: "sth_".
– POOL_SIZE: The default MongoDB pool size of database

connections. Optional. Default value: "5".
– WRITE_CONCERN : The write concern policy to apply when

writing data to the MongoDB database. Default value: "1".
– SHOULD_STORE: Flag indicating if the raw and/or aggregated

data should be persisted. Valid values are: "only-raw",
"only-aggregated" and "both". Default value: "both".

6. Configuration
Via environment variables and config.js

• Environment variables:
– TRUNCATION_EXPIRE_AFTER_SECONDS : Data from the raw

and aggregated data collections will be removed if older
than the value specified in seconds. In case of raw data the
reference time is the one stored in the recvTime property
whereas in the case of the aggregated data the reference of
time is the one stored in the _id.origin property. Set the
value to 0 not to apply this time-based truncation policy.
Default value: "0".

6. Configuration
Via environment variables and config.js

• Environment variables:
– TRUNCATION_SIZE : The oldest raw data (according to

insertion time) will be removed if the size of the raw data
collection gets bigger than the value specified in bytes. Set
the value to 0 not to apply this truncation policy. Take into
consideration than the "size" configuration parameter is
mandatory in case size collection truncation is desired as
required by MongoDB. Default value: "0". Notice that this
configuration parameter does not affect the aggregated data
collections since MongoDB does not currently support
updating documents in capped collections which increase
the size of the documents. Notice also that in case of the
raw data, the size-based truncation policy takes precedence
over the TTL one. Default value: "0".

6. Configuration
Via environment variables and config.js

• Environment variables:
– TRUNCATION_MAX : The oldest raw data (according to

insertion time) will be removed if the number of documents
in the raw data collections goes beyond the specified value.
Set the value to 0 not to apply this truncation policy. Notice
that this configuration parameter does not affect the
aggregated data collections since MongoDB does not
currently support updating documents in capped collections
which increase the size of the documents. Default value:
"0".

– IGNORE_BLANK_SPACES : Attribute values to one or more
blank spaces should be ignored and not processed either as
raw data or for the aggregated computations. Default value:
"true".

6. Configuration
Via environment variables and config.js

• Environment variables:
– NAME_MAPPING: The mapping mechanism provided consists

on a 1 to 1 mapping between services, service paths, entity
ids and types and attribute names via a mapping
configuration file applied for the generation of the collection
names. The NAME_MAPPING value is an object including 2
properties: 1) enabled which, as its name states, enables
or disables the mapping mechanism (default value: "true")
and 2) configFile which is a relative or absolute path to
the mapping configuration file (default value:
"./name-mapping.json").

6. Configuration
Via environment variables and config.js

• Environment variables:
– NAME_ENCODING: The encoding criteria consists on: 1) encode the

forbidden characters using an escaping character (x) and the
numerical Unicode code for each character (for instance, the $
character will be encoded as x0024), 2) database and collection
names already using the above encoding must be escaped
prepending another x (for instance, the text x002a will be
encoded as xx002a), 3) the uppercase characters included in
database names will be encoded using the mechanism stated in
1), 4) collection names starting with system. will be encoded as
xsystem. and 5) the name separator character (xffff) is not
decoded. It is important to note that the encoding mechanism
also applies in case a mapping has been accomplished over the
resulting or new element. Default value: "true".

6. Configuration
Via environment variables and config.js

• Environment variables:
– LOGOPS_LEVEL: The log level to use. Possible values are:

"DEBUG", "INFO", "WARN", "ERROR" and "FATAL". Default
value: "INFO".

– LOGOPS_FORMAT : The log format to use. Possible values are:
"json" (writes logs as JSON), "dev" (for development, used
when the NODE_ENV variable is set to "development").
Default value: "json".

– PROOF_OF_LIFE_INTERVAL : The time in seconds between
proof of life logging messages informing that the server is
up and running normally. Default value: "60".

7. Running

7. Running
Even nicer and simpler :)

fiware-sth-comet> ./bin/sth

8. References

1. Github repository:
• https://github.com/telefonicaid/fiware-sth-comet

2. Documentation at ReadTheDocs:
• https://fiware-sth-comet.readthedocs.io/en/latest/

8. References

https://github.com/telefonicaid/fiware-sth-comet
https://github.com/telefonicaid/fiware-sth-comet
https://fiware-sth-comet.readthedocs.io/en/latest/
https://fiware-sth-comet.readthedocs.io/en/latest/

Thank you!

http://fiware.org
Follow @FIWARE on Twitter

