
1

FIWARE NGSI:
Managing Context Information
at large scale

Fermín Galán Márquez

Technological Expert. Orion Context Broker Development Lead

fermin.galanmarquez@telefonica.com

mailto:fermin.galanmarquez@telefonica.com

• Context Management in FIWARE

• Orion Context Broker

• Creating and pulling data

• Pushing data and notifications

• Batch operations

• Advanced functionality

3

Outline

Being “Smart” requires first being “Aware”

• Implementing a Smart Application requires gathering and
managing context information

• Context information refers to the values of attributes
characterizing entities relevant to the application

Bus
• Location
• No. passengers
• Driver
• Licence plate

Citizen
• Name-Surname
• Birthday
• Preferences
• Location
• ToDo list

Shop
• Location
• Business name
• Franchise
• offerings

4

Being “Smart” requires first being “Aware”

• Implementing a Smart Application requires gathering and
managing context information

• Context information refers to the values of attributes
characterizing entities relevant to the application

Boiler
• Manufacturer
• Last revision
• Product id
• temperature

Users
• Name-Surname
• Birthday
• Preferences
• Location
• ToDo list

Flowerpot
• Humidity
• Watering plan

5

Different sources of context need to be handle

• Context information may come from many sources:
– Existing systems

– Users, through mobile apps

– Sensor networks (IoT Devices)

• Source of info for a given entity.attribute may vary over
time

It’s too hot!

6

A non-intrusive approach is required

• Capable to integrate with existing or future systems dealing with
management of municipal services without impact in their
architectures

• Info about attributes of one entity may come from different
systems, which work either as Context Producers or Context
Providers

• Applications rely on a single model adapting to systems of each city

System A System B

Context Producer Context Provider

7

FIWARE NGSI: “The SNMP for IoT”

• Capturing data from, or Acting upon, IoT devices becomes
as easy as to read/change the value of attributes linked to
context entities using a Context Broker

Setting up the value of attribute
“status” to “light on” triggers
execution of a function in the IoT
device that switches the lamp on

Issuing a get operation on the
“presenceSensor” attribute
enables the application to get
info about presence of people
near the lamp

8

Connecting to the Internet of Things

• Capturing data from, or Acting upon, IoT devices becomes
as easy as to read/change the value of attributes linked to
context entities using a Context Broker

Setting up the value of attribute
“status” to “watering” triggers
execution of a function in the IoT
device that waters the plant

Issuing a get operation on the
“humidity” attribute enables the
application to find out whether
the plant has to be watered

9

Context Management in FIWARE

• The FIWARE Context Broker GE implements the OMA NGSI-
9/10 API: a simple yet powerful standard API for managing
Context information complying with the requirements of a
smart city

• The FIWARE NGSI API is Restful: any web/backend
programmer gets quickly used to it

Boiler
• Manufacturer
• Last revision
• Product id
• temperature

Users
• Name-Surname
• Birthday
• Preferences
• Location
• ToDo list

Flowerpot
• Humidity
• Watering plan

10

Orion Context Broker

• Main functions:

– Context management

– Context availability management (advanced topic)

• HTTP and REST-based

– JSON payload support

• Context in NGSI is based in an entity-attribute model:

Attributes

• Name
• Type
• Value

Entity

• EntityId
• EntityType

1 n

“has”

11

Two “flavors” of NGSI API

• NGSIv1

– Original NGSI RESTful binding of OMA-NGSI

– Implemented in 2013

– Uses the /v1 prefix in resource URL

• NGSIv2

– A revamped, simplified binding of OMA-NGSI

• Simple things must be easy

• Complex things should be possible

• Agile, implementation-driven approach

• Make it as developer-friendly as possible (RESTful, JSON, …)

– Enhanced functionality compared with NGSIv1 (eg. filtering)

– Stable, ready for production, version already available

• Current NGSIv2 version is Release Candidate 2016.10 http://telefonicaid.github.io/fiware-
orion/api/v2/stable

• New features coming (http://telefonicaid.github.io/fiware-orion/api/v2/stable)

– Uses the /v2 prefix in resource URL

• Introduction to NGSIv2

– https://docs.google.com/presentation/d/1_fv9dB5joCsOCHlb4Ld6A-
QmeIYhDzHgFHUWreGmvKU/edit#slide=id.g53c31d7074fd7bc7_0

12

http://telefonicaid.github.io/fiware-orion/api/v2/stable
http://telefonicaid.github.io/fiware-orion/api/v2/stable
https://docs.google.com/presentation/d/1_fv9dB5joCsOCHlb4Ld6A-QmeIYhDzHgFHUWreGmvKU/edit#slide=id.g53c31d7074fd7bc7_0

NGSIv2 status (AKA the “NGSIv2 disclaimer”)

• NGSIv2 is in “release candidate” status

– By "release candidate" we mean that the specification is quite stable,
but changes may occur with regard to new release candidates or the
final version. In particular changes may be of two types:

• Extensions to the functionality currently specified by this
document. Note that in this case there isn't any risk of breaking
backward compatibility on existing software implementations.

• Slight modifications in the functionality currently specified by this
document, as a consequence of ongoing discussions. Backward
compatibility will be taken into account in this case, trying to
minimize the impact on existing software implementations. In
particular, only completely justified changes impacting backward
compatibility will be allowed and "matter of taste" changes will not
be allowed.

13

So… when should I use NGSIv1 or NGSIv2?

• In general, it is always preferable to use NGSIv2

• However, you would need to use NGSIv1 if

– You need register/discovery operations (context management
availability functionality)

• Not yet implemented in NGSIv2 (in roadmap)

– Zero tolerance to changes in software interacting with Orion

• Even if you use NGSIv1, you can still use NGSIv2 advanced
functionality

– See “Considerations on NGSIv1 and NGSIv2 coexistence”
section at Orion manual

• For a NGSIv1-based version of this presentation have a
look to

– http://bit.ly/fiware-orion-ngsiv1

14

http://bit.ly/fiware-orion-ngsiv1

Orion Context Broker in a nutshell

Orion Context Broker

Context
Producers

Context
Consumers

subscriptions

update

query

notify

notify

update

update

DB

1026

1026

15

GET <cb_host>:1026/version

{
"orion" : {

"version" : "1.6.0",
"uptime" : "7 d, 21 h, 33 m, 39 s",
"git_hash" : "aee96414cc3594bba161afb400f69d101978b39c",
"compile_time" : "Mon Dec 5 08:38:58 CET 2016",
"compiled_by" : "fermin",
"compiled_in" : "centollo"

}
}

16

Orion Context Broker – check health

Orion Context Broker Basic Operations

Entities
• GET /v2/entities

• Retrieve all entities
• POST /v2/entities

• Creates an entity
• GET /v2/entities/{entityID}

• Retrieves an entity
• [PUT|PATCH|POST] /v2/entities/{entityID}

• Updates an entity (different “flavors”)
• DELETE /v2/entities/{entityID}

• Deletes an entity

17

Orion Context Broker Basic Operations

Attributes
• GET /v2/entities/{entityID}/attrs/{attrName}

• Retrieves an attribute’s data
• PUT /v2/entities/{entityID}/attrs/{attrName}

• Updates an attribute’s data
• DELETE /v2/entities/{entityID}/attrs/{attrName}

• Deletes an attribute
• GET /v2/entities/{entityID}/attrs/{attrName}/value

• Retrieves an attribute’s value
• PUT /v2/entities/{entityID}/attrs/{attrName}/value

• Updates an attribute’s value

18

Context Broker operations: create & pull data

• Context Producers publish data/context elements by invoking the update

operations on a Context Broker.

• Context Consumers can retrieve data/context elements by invoking the query

operations on a Context Broker

Context Consumer

query

Context Producer

update

Context Broker

19

Quick Usage Example: Car Create

201 Created

20

POST <cb_host>:1026/v2/entities
Content-Type: application/json
...

{
"id": "Car1",
"type": "Car",
"speed": {

"type": "Float",
"value": 98

}
}

Quick Usage Example: Car Speed Update (1)

PUT <cb_host>:1026/v2/entities/Car1/attrs/speed
Content-Type: application/json
...

{
"type": "Float",
"value": 110

}

204 No Content
…

21

In the case of id ambiguity, you can use
"?type=Car" to specify entity type

Quick Usage Example: Car Speed Query (1)

200 OK
Content-Type: application/json
...

{
"type": "Float",
"value": 110,
"metadata": {}

}

22

You can get all the attributes of the entity using the
entity URL:

GET/v2/entities/Car1/attrs

GET <cb_host>:1026/v2/entities/Car1/attrs/speed

Quick Usage Example: Car Speed Update (2)

PUT <cb_host>:1026/v2/entities/Car1/attrs/speed/value
Content-Type: text/plain
...

115

204 No Content
…

23

Quick Usage Example: Car Speed Query (2)

24

200 OK
Content-Type: text/plain
...

115.000000

GET <cb_host>:1026/v2/entities/Car1/attrs/speed/value
Accept: text/plain

201 Created
...

Quick Usage Example: Room Create (1)

POST <cb_host>:1026/v2/entities
Content-Type: application/json
...

{
"id": "Room1",
"type": "Room",
"temperature": {

"type": "Float",
"value": 24

},
"pressure": {

"type": "Integer",
"value": 718

}
}

25

204 No Content
…

Quick Usage Example: Room Update (1)

PATCH <cb_host>:1026/v2/entities/Room1/attrs
Content-Type: application/json
...

{
"temperature“: {

"type": "Float",
"value": 25

},
"pressure": {

"type": "Integer",
"value": 720

}
}

26

Quick Usage Example: Room Query (1)

27

200 OK
Content-Type: application/json
...

{
"pressure": {

"type": "Integer",
"value": 720,
"metadata": {}

},
"temperature": {

"type": "Float",
"value": 25,
"metadata": {}

}
}

GET <cb_host>:1026/v2/entities/Room1/attrs

Quick Usage Example: Room Query (2)

28

200 OK
Content-Type: application/json
...

{
"pressure": 720,
"temperature": 25

}

GET <cb_host>:1026/v2/entities/Room1/attrs?options=keyValues

201 Created
...

Quick Usage Example: Room Create (2)

POST <cb_host>:1026/v2/entities
Content-Type: application/json
...

{
"id": "Room2",
"type": "Room",
"temperature": {

"type": "Float",
"value": 29

},
"pressure": {

"type": "Integer",
"value": 730

}
}

29

Quick Usage Example: Filters (1)

30

200 OK
Content-Type: application/json
...

[
{

"id": "Room2",
"pressure": 730,
"temperature": 29,
"type": "Room"

}
]

GET <cb_host>:1026/v2/entities?options=keyValues&q=temperature>27

Quick Usage Example: Filters (2)

31

200 OK
Content-Type: application/json
...

[
{

"id": "Room1",
"pressure": 720,
"temperature": 25,
"type": "Room"

}
]

GET <cb_host>:1026/v2/entities?options=keyValues&q=pressure==715..725

The full description of the Simple
Query Language for filtering can be
found in the NGSIv2 Specification
document

Context Broker operations: push data

• Context Consumers can subscribe to receive context information that satisfy

certain conditions using the subscribe operation. Such subscriptions may

have an expiration time.

• The Context Broker notifies updates on context information to subscribed

Context Consumers by invoking the notify operation they export

subId = subscribeContext (consumer, expr, expiration)

Context Consumer

notify (subId, data/context)

Context Broker

Application

32

Quick Usage Example: Subscription

POST <cb_host>:1026/v2/subscriptions
Content-Type: application/json

…

{
"subject": {
"entities": [

{
"id": "Room1",
"type": "Room"

}
],
"condition": {

"attrs": ["temperature"]
}

},
"notification": {
"http": {

"url": "http://<host>:<port>/publish"
},
"attrs": ["temperature"]

},
"expires": "2026-04-05T14:00:00.00Z"

}

201 Created
Location: /v2/subscriptions/51c0ac9ed714fb3b37d7d5a8
...

33

25

19

Quick Usage Example: Notification

34

POST /publish HTTP/1.1
Content-type: application/json; charset=utf-8
Ngsiv2-AttrsFormat: normalized
…

{
"subscriptionId": "574d720dbef222abb860534a",
"data": [

{
"id": "Room1",
"type": "Room",
"temperature": {

"type": "Float",
"value": 19,
"metadata": {}

}
}

]
}

Quick Usage Example: Notification

35

List existing subscriptions

36

200 OK
Content-Type: application/json
…
[{

"id": " 51c0ac9ed714fb3b37d7d5a8 ",
"expires": "2026-04-05T14:00:00.00Z",
"status": "active",
"subject": {

"entities": [{
"id": "Room1",
"type": "Room"

}],
"condition": {

"attrs": ["temperature"]
}

},
"notification": {

"timesSent": 3,
"lastNotification": "2016-05-31T11:19:32.00Z",
"lastSuccess": "2016-05-31T11:19:32.00Z",
"attrs": ["temperature"],
"attrsFormat": "normalized",
"http": {

"url": "http://localhost:1028/publish"
}

}
}]

The full description of the
subscription object (including all
its fields) can be found in the
NGSIv2 Specification

GET <cb_host>:1026/v2/subscriptions

Orion Context Broker batch operations

37

• Batch query and batch update

• They are equivalent in functionality to previously described RESTful

operations

• All them use POST as verb and the /v2/op URL prefix, including

operation parameters in the JSON payload

• They implement extra functionality that cannot be achieved with

RESTful operations, e.g. to create several entities with the same

operation

• They are not a substitute but a complement to RESTful operations

201 Created
...

Batch Operation Example: Create Several Rooms

POST <cb_host>:1026/v2/op/update
Conten-Type: application/json
...

{
"actionType": "APPEND",
"entities": [

{
"type": "Room",
"id": "Room3",
"temperature": {

"value": 21.2,
"type": "Float"

},
"pressure": {

"value": 722,
"type": "Integer"

}
},

…

38

…
{

"type": "Room",
"id": "Room4",
"temperature": {

"value": 31.8,
"type": "Float"

},
"pressure": {

"value": 712,
"type": "Integer"

}
}

]
}

How to get Orion? (Virtual Machines)

39

• FIWARE Lab image

– Image: orion-psb-image-R<x>.<y>

• VirtualBox image

– http://bit.ly/fiware-orion024-vbox (it’s big!)

– User/pass:
• fiware/fiware

• root/fiware

• Hint: update Orion package once the VM is deployed

http://bit.ly/fiware-orion024-vbox

How to get Orion? (Docker containers)

40

• Assuming docker is installed in your system

• Documentation in https://github.com/telefonicaid/fiware-
orion/tree/develop/docker

• Quick guide

git clone https://github.com/telefonicaid/fiware-orion.git

cd fiware-orion/docker

sudo docker-compose up

• That’s all!

– curl localhost:1026/version

https://github.com/telefonicaid/fiware-orion/tree/develop/docker

• Have a look to the FIWARE Reference Tutorial
application
– git clone https://github.com/Fiware/tutorials.TourGuide-

App.git

– cd tutorials.TourGuide-App/

– docker-compose up orion

– curl localhost:1026/version

• Self-explanatory README.md at root directory

• Open a Postman session and rock and roll
– Postman collection:

https://github.com/Fiware/tutorials.TourGuide-
App/blob/develop/contrib/CampusParty2016.postman_coll
ection

41

Would you like to play with this?

https://github.com/Fiware/tutorials.TourGuide-App/blob/develop/contrib/CampusParty2016.postman_collection

42

Pagination

Metadata

Compound attribute/metadata values

Type browsing

Geo-location

Query filters

DateTime support

Custom notifications

Notification status

Attribute/metadata filtering

Special attribute/metadata

Registrations & context providers

Multitenancy

Orion advanced functionality

Creating & pulling data

Pushing data

Subscriptions & Notifications

Batch operations

• Entities may have a location

• Queries/subscriptions may use the location as
search criteria

• Specific session on this tomorrow 12:45-
13:30

– NGSI: geoqueries and Carto integration, Fermín
Galán & Francisco Romero (Data Team)

43

Geo-location

• Pagination helps clients organize query and
discovery requests with a large number of
responses.

• Three URI parameters:

– limit
• Number of elements per page (default: 20, max: 1000)

– offset
• Number of elements to skip (default: 0)

– count (option)
• Returns total elements (default: not return)

44

Pagination

• Example, querying the first 100 entries:
– GET <orion_host>:1026/v2/entities?limit=100&options=count

• The first 100 elements are returned, along with the
following header in the response:
– Fiware-Total-Count: 322

• Now we now there are 322 entities, we can keep querying
the broker for them:
– GET <orion_host>:1026/v2/entities?offset=100&limit=100

– GET <orion_host>:1026/v2/entities?offset=200&limit=100

– GET <orion_host>:1026/v2/entities?offset=300&limit=100

45

Pagination

• By default, results are ordered by entity creation date

• This behavior can be overridden using orderBy URI parameter

– A comma-separated list of attributes. Results are ordered by the first
attribute. On ties, the results are ordered by the second attribute and
so on. A "!" before the attribute name means that the order is
reversed.

• Example: get the first 10 entities ordered by temp in ascending
order, then humidity in descending order
GET <orion_host>:1026/v2/entities?limit=20&offset=0&orderBy=temp,!humidity

• dateCreated and dateModified can be used to ordering by
entity creation and modification date, respectively

46

Pagination

• Users may attach metadata to attributes
• Reserved metadata: ID, location, dateCreated, dateModified, previousValue,

actionType
• Examples:

47

…
"temperature": {

"type": "Float",
"value": 26.5,
"metadata": {
{

"accuracy": {
"type": "Float",
"value": 0.9

}
}

}
…

…
"temperature": {

"type": "Float",
"value": 26.5,
"metadata": {
{

“average": {
"type": "Float",
"value": 22.4

}
}

}
…

Metadata

Complete NGSI Model

Attributes

• Name
• Type
• Value

Entity

• EntityId
• EntityType

1 n

“has”

Metadata

• Name
• Type
• Value1 n

“has”

48

• Attributes and metadata can have a structured
value. Vectors and key-value maps are
supported.

• It maps directly to JSON's objects and arrays.

49

Compound Attribute/Metadata Values

• Example: we have
a car whose four
wheels' pressure
we want to
represent as a
compound
attribute for a car
entity. We would
create the car
entity like this:

{
"type": "Car",
"id": "Car1",
"tirePressure": {

"type": "kPa",
"value": {

"frontRight": "120",
"frontLeft": "110",
"backRight": "115",
"backLeft": "130"

}
}

}

50

Compound Attribute/Metadata Values

Type Browsing

• GET /v2/types
• Retrieve a list of all entity types currently in Orion,

including their corresponding attributes and entities
count

• GET /v2/types/{typeID}
• Retrieve attributes and entities count associated to an

entity type

PRO TIP

GET /v2/contextTypes?options=values
Retrieves just a list of all entity types without any extra info

51

• For the GET /v2/entities operation

• By entity type

• By entity id list

• By entity id pattern (regex)

• By entity type pattern (regex)

• By geographical location

– Described in detail in previous slides

• Filters can be used simultaneously (i.e. like AND condition)

52

GET <cb_host>:1026/v2/entities?type=Room

GET <cb_host>:1026/v2/entities?id=Room1,Room2

GET <cb_host>:1026/v2/entities?idPattern=^Room[2-5]

GET <cb_host>:1026/v2/entities?typePattern=T[ABC]

Query filters

• By attribute value (q)

• By metadata value (mq)

• See full details about q and mq query language in NGSIv2 specification

53

GET <cb_host>:1026/v2/entities?q=temperature>25

GET <cb_host>:1026/v2/entities?q=tirePressure.frontRight >130

attribute name

attribute sub-key (for compound attribute values only)

GET <cb_host>:1026/v2/entities?mq=temperature.avg>25

GET <cb_host>:1026/v2/entities?mq=tirePressure.accuracy.frontRight >90

metadata sub-key (for compound

metadata values only)

attribute name

metadata name

Query filters

54

POST <cb_host>:1026/v2/subscriptions
…
{
"subject": {
"entities": [
{
"id": “Car5",
"type": “Car"

},
{

"idPattern": “^Room[2-5]",
"type": "Room"

},
{

"id": “D37",
"typePattern": "Type[ABC]"

},
],
"condition": {
"attrs": ["temperature"],
"expression": {

"q": "temperature>40",
"mq": "humidity.avg==80..90",
"georel": "near;maxDistance:100000",
"geometry": "point",
"coords": "40.418889,-3.691944"

}
}

},
…

}

• Filters can be also used in
subscriptions

– id

– type

– id pattern

– type pattern

– attribute values

– metadata value

– geographical location

Query filters

Datetime support

• Orion implements date support

– Based on ISO ISO8601 format, including partial
representations and timezones

• See https://fiware-
orion.readthedocs.io/en/master/user/ngsiv2_implementati
on_notes/index.html#datetime-support for syntax details

– Use reserved attribute type DateTime to express a date

– Date-based filters are supported

55

https://fiware-orion.readthedocs.io/en/master/user/ngsiv2_implementation_notes/index.html#datetime-support

Datetime support

• Attribute value arithmetic filters can be used with dates as if they
were numbers

• Entity dateModified and dateCreated special attributes, to get
entity creation and last modification timestamps

– They are shown in query responses using
attrs=dateModified,dateCreated

• Entity dateModified and dateCreated special metadata, to get
attribute creation and last modification timestamps

– They are shown in query responses using
metadata=dateModified,dateCreated

56

POST /v2/entities
…
{
"id": "John",
"birthDate": {
"type": "DateTime",
"value": "1979-10-14T07:21:24.238Z"

}
}

GET /v2/entities?q=birthDate<1985-01-01T00:00:00

Example: create entity John,
with birthDate attribute using
type DateTime

• Apart from the standard formats defined in the
previous slides NGSIv2 allows to re-define all the
notification aspects

• httpInfo is used instead of http, with the
following subfields
– URL query parameters

– HTTP method

– HTTP headers

– Payload (not necessarily JSON!)

• A simple macro substitution language based on ${..}
syntax can be used to “fill the gaps” with entity data (id,
type or attribute values)

– Exception: this cannot be used in HTTP method field

57

Custom notifications

58

…
"httpCustom": {
"url": "http://foo.com/entity/${id}",
"headers": {
"Content-Type": "text/plain"
},
"method": "PUT",
"qs": {
"type": "${type}"

},
"payload": "The temperature is ${temp} degrees"
}

…
PUT http://foo.com/entity/DC_S1-D41?type=Room
Content-Type: text/plain
Content-Length: 31

The temperature is 23.4 degrees

PUT /v2/entities/DC_S1-D41/attrs/temp/value?type=Room
…
23.4

Custom notification configuration

update

notificaiton

Custom notifications

• Status failed means that last
attempt to notify failed

– E.g. the endpoint is not reachable

• Detailed information in the
notifications element

– timesSent: total number of
notifications attempts (both
successful and failed)

– lastSuccess: last time that
notification was successfully sent

– lastFailure: last time that
notification was tried and failed

– lastNotification: last time the
notification was sent (either success
or failure)

• Corollary: lastNotification value is the
same than either lastFailure or
lastSuccess

59

200 OK
Content-Type: application/json
…
[{

"id": " 51c0ac9ed714fb3b37d7d5a8 ",
"expires": "2026-04-05T14:00:00.00Z",
"status": "failed",
"subject": { … },
"notification": {

"timesSent": 3,
"lastNotification": "2016-05-31T11:19:32.00Z",
"lastSuccess": "2016-05-31T10:07:32.00Z",
"lastFailure": "2016-05-31T11:19:32.00Z",
…

}
}]

Notification status

• By default all attribute are included in query
responses or notifications

• The attrs field (as parameter in GET operations
and as notification sub-field in subscriptions)
can be used to specify a filtering list

• The attrs field can be also used to explicitly
include some special attributes (not included by
default)

– dateCreated, dateModified: described in previous
slide

• The “*” can be used as an alias of “all the
(regular) attributes”

60

Attribute filtering and special attributes

• Examples

– Include only attributes temp and lum
• In queries: GET /v2/entities?attrs=temp,lum

• In subscriptions: "attrs": ["temp", "lum"]

– Include dateCreated and not any other attribute
• In queries: GET /v2/entities?attrs=dateCreated

• In subscriptions: "attrs": ["dateCreated"]

– Include dateModified and all the other (regular)
attributes
• In queries: GET /v2/entities?attrs=dateModified,*

• In subscriptions: "attrs": ["dateModified", "*"]

– Include all attributes (same effect that not using attrs,
not very interesting)
• In queries: GET /v2/entities?attrs=*

• In subscriptions: "attrs": ["*"]

61

Attribute filtering and special attributes

• By default all attribute metadata are included in query
responses and notifications

• The metadata field (as parameter in GET operations and
as notification sub-field in subscriptions) can be used to
specify a filtering list

• The metadata field can be also used to explicitly include
some special metadata (not included by default)

– dateCreated, dateModified: described in previous slide

– actionType: which value is the action type corresponding to
the update triggering the notification: “update”, “append” or
“delete”

– previousValue: which provides the value of the attribute
previous to processing the update that triggers the notification

• The “*” can be used as an alias of “all the (regular)
metadata”

62

Metadata filtering and special attributes

• Examples

– Include only metadata MD1 and MD2
• In queries: GET /v2/entities?metadata=MD1,MD2

• In subscriptions: "metadata": ["MD1", "MD2"]

– Include previousValue and not any other metadata
• In queries: GET /v2/entities?metadata=previousValue

• In subscriptions: "attrs": ["previousValue"]

– Include actionType and all the other (regular) metadata
• In queries: GET /v2/entities?metadata=actionType,*

• In subscriptions: "attrs": ["actionType", "*"]

– Include all metadatata (same effect that not using
metadata, not very interesting)
• In queries: GET /v2/entities?metadata=*

• In subscriptions: "metadata": ["*"]

63

Metadata filtering and special attributes

• Uncached queries and updates

64

Application

ContextBroker ContextProvider

1. registerContext(provider=)

db

2. query 3. query

4. data5. data

Context
Consumer

Registration & Context Providers

POST <cb_host>:1026/v1/registry/registerContext
…
{

"contextRegistrations": [
{

"entities": [
{

"type": "Car",
"isPattern": "false",
"id": "Car1"

},
"attributes": [
{

"name": "speed",
"type": "float",
"isDomain": "false"

}
],
"providingApplication": "http://contextprovider.com/Cars"

}
],
"duration": "P1M"

}

200 OK
...
{
"duration" : "P1M",
"registrationId" : "52a744b011f5816465943d58"

}

65

Context management availability functionality not
yet specified in NGSIv2. Thus, a NGSIv1 operation is
used to create the registration.

Registration & Context Providers

66

GET <cb_host>:1026/v2/entities/Car1/attrs

ContextBroker ContextProvider

db

query

data
200 OK
Content-Type: application/json
...

{
"type": "Float",
"value": 110,
"metadata": {}

}

Registration & Context Providers

• Simple multitenant model based on
logical database separation.

• It eases tenant-based authorization
provided by other components.

• Just use an additional HTTP header
called "Fiware-Service", whose value
is the tenant name. Example:

Fiware-Service: Tenant1

Context
Broker

Tenant1

Tenant2

…

67

Multitenancy

• A service path is a hierarchical scope assigned to an entity
at creation time (with POST /v2/entities).

68

Service Paths

• In order to use a service path we put in a new HTTP header
called "Fiware-ServicePath". For example:

Fiware-ServicePath: /Madrid/Gardens/ParqueNorte/Parterre1

• Properties:

– A query on a service path will look only into the specified node

– Use "ParentNode/#" to include all child nodes

– Queries without Fiware-ServicePath resolve to "/#"

– Entities will fall in the "/" node by default

ParqueNorte

Parterre2Parterre1

69

Service Paths

• Properties (continued):
– You can OR a query using a comma (,)

operator in the header
• For example, to query all street lights that are either in

ParqueSur or in ParqueOeste you would use:
ServicePath: Madrid/Gardens/ParqueSur,
Madrid/Gardens/ParqueOeste

• You can OR up to 10 different scopes.

– Maximum scope levels: 10
• Scope1/Scope2/.../Scope10

– You can have the same element IDs in
different scopes (be careful with this!)

– You can't change scope once the element is
created

– One entity can belong to only one scope
– It works not only with queries, but also with

subscriptions/notifications
– It works not only in NGSI10, but also with

registrations/discoveries (NGSI9)

ParqueNorte

Parterre1
light1

light1

A B

A or B

70

Service Paths

• Interesting NGSI&Orion-related stuff during
FIWARE Summit

– Wednesday 14th 12:45-13:30: “NGSI: geoqueries
and Carto integration”, Fermín Galán & Francisco
Romero (Data Team)

– Wednesday 14th, 15:45-16:30: “Creating context
historic using Cygnus”, Francisco Romero (Data team)

– Wednesday 14th 18:15-18:45 “NGSIv2-Overview-
for-Developers-That-Already-Know-NGSIv1”, Fermín
Galán (Orion Context Broker Development Lead)

– Thursday 15th 12:15-13:00, “Hands-on FIWARE
Context Provider Simulator Tutorial”, German Toro
(Data team)

71

Where (and when) to go after this talk?

• The easy way
– This presentation: google for “fermingalan slideshare” and search the one

named “Managing Context Information at large scale”
– Orion User Manual: google for “Orion FIWARE manual” and use the first hit
– Orion Catalogue page: google for “Orion FIWARE catalogue” and use the first

hit

• References
– NGSIv2 Specification

• http://fiware.github.io/specifications/ngsiv2/stable
• http://fiware.github.io/specifications/ngsiv2/latest

– NGSIv2 for NGSIv1 developers
• http://bit.ly/ngsiv2-vs-ngsiv1

– This presentation
• http://www.slideshare.net/fermingalan/fiware-managing-context-information-at-large-

scale

– Orion Catalogue:
• http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-

broker

– Orion support trhough StackOverflow
• Ask your questions using the “fiware-orion” tag
• Look for existing questions at http://stackoverflow.com/questions/tagged/fiware-orion

72

Would you like to know more?

http://fiware.github.io/specifications/ngsiv2/stable
http://fiware.github.io/specifications/ngsiv2/latest
http://bit.ly/ngsiv2-vs-ngsiv1
http://www.slideshare.net/fermingalan/fiware-managing-context-information-at-large-scale
http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
http://stackoverflow.com/questions/tagged/fiware-orion

Thank you!

http://fiware.org

Follow @FIWARE on Twitter

Integration with sensor networks

• The backend IoT Device Management GE enables creation and

configuration of NGSI IoT Agents that connect to sensor networks

• Each NGSI IoT Agent can behave as Context Consumers or Context

Providers, or both

FIWARE Context Broker

IoT

Agent-1

IoT

Agent-2

IoT

Agent-n

IoT Agent

Manager

create/monitor

FIWARE Backend IoT

Device Management

OMA NGSI API (northbound interface)

(southbound interfaces)

MQTTETSI M2M IETF CoAP

74

• Federation of infrastructures (private/public regions)

• Automated GE deploymentCloud

• Complete Context Management Platform

• Integration of Data and Media ContentData

•Easy plug&play of devices using multiple protocols

•Automated Measurements/Action Context updatesIoT

•Visualization of data (operation dashboards)

•Publication of data sets/servicesApps

•Easy support of UIs with advanced web-based 3D and AR
capabilities

•Visual representation of context information.
Web UI

•Advanced networking capabilities (SDN) and Middleware

• Interface to robotsI2ND

•Security Monitoring

•Built-in Identity/Access/Privacy ManagementSecurity

Context Management in FIWARE

75

FI-WARE Context/Data Management Platform

Context/Data Management Platform

Applications

OMA NGSI-9/10
Processing/Analysis

Algorithms

Gathered data is
injected for

processing/analysis

Distributed
Context
Sources Complex Event

Processing
(PROTON)

BigData
(COSMOS)

Processed data is
injected for

processing/analysi
s

Data generated either by CEP
or BigData is published

Gathered data injected
for CEP-like processing

Direct
bigdata

injection

Programming of
rules

76

http://catalogue.fi-ware.eu/enablers/complex-event-processing-cep-ibm-proactive-technology-online
http://catalogue.fi-ware.eu/enablers/complex-event-processing-cep-ibm-proactive-technology-online
http://catalogue.fi-ware.eu/enablers/bigdata-analysis-samson
http://catalogue.fi-ware.eu/enablers/bigdata-analysis-samson
http://catalogue.fi-ware.eu/enablers/publishsubscribe-context-broker-samson-broker
http://catalogue.fi-ware.eu/enablers/publishsubscribe-context-broker-samson-broker

• Used by /v2/op/update (batch operation)

• Conventional actionTypes

– APPEND: append (or update if the attribute already
exists)

– UPDATE: update

– DELETE: delete

• Special actionTypes

– APPEND_STRICT: strict append (returns error if some of
the attributes to add already exists)

– REPLACE: delete all the entity attributes, next append
the ones in the update request

Special update action types

77

